RC Car (KART)

Lecture Summerschool 1 (SS1)

Hes-so/// Vi

School of Engineering

Orientation: Systems Engineering (Synd)

Specialisation: Infotronics (IT)

Course: Summerschool 1 (SS1)

Authors: Silvan Zahno, Axel Amand, Frangois Corthay, Charles Praplan
Date: 14.03.2025

Version: v3.0.1

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
https://www.hevs.ch/fr/hautes-ecoles/haute-ecole-d-ingenierie/systemes-industriels/formation-bachelor-ingenieure-en-systemes-industriels/infotronics-204601
https://www.hevs.ch/fr/hautes-ecoles/haute-ecole-d-ingenierie/systemes-industriels/formation-bachelor-ingenieure-en-systemes-industriels/infotronics-204601
https://github.com/hei-synd-did
https://github.com/hei-synd-did
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Contents
1 Security GUIeEooe e 5
1.1 COMSEQUETICESttt ettt ettt ettt e ettt e e e e et 6
2 INtrodUCHION ..o 7
2.1 ODJECHIVE ettt ettt et 7
2.2 Evaluationoooiii 7
2.3 FHlES oo 7
2.4 L0000 o 8
2.5 Cabling ..o 9
3 System Architectureoooiiiii e 10
3.1 Block diagramoooiiiii e 11
3.2 FUNCHIONIS ..ottt e e e e 12
4 Hardware COMPOINEIESttt et eeeeeee 13
4.1 GOOA PractiCesttt e e e e e e 14
4.2 Motherboard (MB)ouuiiii ittt ettt et et e 14
2 O o P 14
4.2.2 SODIMM Daughterboard Connectorooviiiiiiiiieeeiiiiiiiiiaaeea... 15
4 2.3 /S i 15
424 FPGA RESEE ...ttt e e e e e e s 16
4.2.5 UART Sniflero e 16
4.2.6 BLE SOCKeT ...\ttt 16
4.3 Dautherboard (DB)ouiiiii e 17
4.3,] POWET . 17
4.3.2 Programmingttt 17
4.3.3 Connection with Motherboard 17
43,4 T O o 18
R Y o o P 19
o O B @ 1Y o} ') A 19
4.4.2 STEPPEI-IMOLOTttt et et et 19
4.4.3 PMOD DC-Stepper Control boardoooiiiiiii i 20
45 End of turn switCh ... oo 21
4.6 Hall Sensor 21
4.7 Bluetooth Dongle NRF52840 ... oo 22
4.8 SeNSOTS & I/ 08 ottt e e 22
4.8.1 SEIVO MoOtOT ..ttt e e e e e e e 22
4.8.2 Custom modulest 22
5 FPGA DOSIGI . oottt e e e 23
5.1 TOPLEVEL . ..ot 24
5.1.1 PACKAGES - . . et 24
5.1.2 Custom DlOCKSoo i 25
5.1.3 TeStbenchescooouiii e 25
5.1.4 Embedded LEDS 25
5.2 Direct Current (DC) Motor Controllerttt 26
5. 2. OV VI OW ittt ittt ettt e e e e e e e e e 26
5.2.2 PWM Generationoouininiiti ittt et et e 27

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 2/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

5.2.3 Hardware orientationooooiiiiiiiiiiiiiiii e 27
5.2.4 Bluetooth connectionooouiiiiiiitiiiiiiiiii e 27
5.2.5 ReStart ... o 28
52,6 TOSES oo 28

5.3 Stepper Motor Controller 29
5.3.1 OVEIVIEW ...ttt ettt et 29
5.3.2 Driving Coilso 30
5.3.3 Initialisation of the Kart ... 31
5.3.4 Tasks SUMIMATYot 32
5.3, TOSES ettt 32

5.4 Sensors Controller e 33
5.4.1 OVOIVIEW ..ttt ettt ettt et e et et e e e e e e e e e 33
5.4.2 Hardware SetUPoovviiiiii it 34
5.4.3 Hall COUNLETottt et e 35
5.4.4 Ultrasound Ranger (Optional) ... e 36
5.4.5 Servomotors controller (Optional)cooiiiiiiiiiiiiiii i, 37
5.4.6 User functionalities (Optional) 38

5.5 Optional featuresooooiuui e 39
5.5.1 DCMotor - Acceleration Tampouuueetiun et 39
5.5.2 StepperMotor - Dynamic steering frequencyccoooiiiiiiiiiiiiiiinneaa.... 39
5.5.3 SEIISOIS . ..ttt et ettt et 39
5.5.4 OFNeT . oottt 40

ST] 5 o ¥ 41
6.1 Permodule 42
6.1.1 DC MoOtor teSHINE . ..o evtt ettt e 42
6.1.2 Stepper Motor tesStingoioniii e 43
6.1.3 Sensors Controller teStinguuuuuniii 45

6.2 WHhOLe CITCUILottt e 48
6.2.1 Modules SImulation e 48
6.2.2 Full-boardo 50

6.3 Setting up the board 51
6.3.1 I/Os configuration 51
6.3.2 PIning SetUPoooiii 51
6.3.3 ONboard LEDSttt 52

6.4 Programming the boardo 52
6.5 USB commands emulationoouuuuiiiiiiiiitt 53
6.5.1 QUICK TSt ...ttt e 54
6.5.2 Registers RIW ... oo 54

7 ComMMUIICALIONttt ettt et ettt ettt 55
7.1 General Principle 56
7.1.1 Serial Port Configurationuuuuuuet e 56
7.1.2 Message fOrmato 56

0 AT <3 51 1< o 57
7.3 Initialisation SEqUENCE i i 59
APPEIAICES . . . ettt 60
A TOOIS oo 61
I HDL DESIZINET ..ottt ettt ettt e et et e et e 61

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 3/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

IT MOdelSIM ..ot 62

I Microchip LiDero 63

B PMod boardsuuu 69
I IpULS .o 69

IT QU PUES ottt 70

C INSPITaAtION .. een ettt e 73
GLOSSATY . e ettt 79

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 4/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Security Guide

In the pursuit of creating a small remote-controlled car, it is imperative to consider the security-
aspect of the project. Ensuring the integrity of the hardware, preventing damage to components
and personal safety are vital. This chapter outlines the security measures and protocols that must be
adhered to throughout the course of the project. These measures have been put in place to protect
both the project’s hardware and the participants involved.

Some security rules are also mentioned again in the followoing chapters, where they are relevant.

Think before doing
Certainly, thinking before taking action is a fundamental principle of effective

e

project management and security.

No Hardware to Leave the Premises
To safeguard the project’s hardware components, it is strictly forbidden for any
team member to take project-related hardware home.

All hardware must be properly stored in the designated laboratory cabinets.

Behaviour in the Labors
To safeguard the project’s hardware components, it is strictly forbidden to have
any food and drinks close to the project-related hardware.

' In addition protection for other equipments such as tables, instruments must

be used.

The Labors needs to be kept clean and tidy.

Mechanical Precautions

The motors used in the remote-controlled car can pose a physical risk, and
special attention should be given to prevent accidents and injuries. Team
members must exercise caution when handling the motors, ensuring that they
are properly secured, and that all moving parts are well-guarded to prevent

accidental contact.

Personal Protective Equipment (PPE)

When working with mechanical tools and machines, it’s imperative to
prioritize the safety of all team members. PPE, such as safety goggles,
gloves, ear protection, and dust masks, should be worn as appropriate
when operating machinery. Always remember, safety first.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 5/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Mechanic and Electronic

Use either:

« Nylon screws and risers to secure the boards to your Kart.

« Plastic washer between the risers and/or screws and any electronic board.

Power Disconnection Protocol
Completely disconnect any power source before making changes or modifica-
tions on the hardware.

Before connecting batteries to the remote-controlled car, comprehensive func-

tional testing is mandatory. The following precautions must be taken:

« Prior to connecting the batteries, all functionalities of the car must be tested
using a laboratory power supply limited to 0.15A, excluding the motors.
When attaching the motors and other custom equipment, the power supply
limit must be increased to 1.2A. This precaution prevents sudden surges of
current from damaging the circuitry during the initial testing phase.

- Batteries are recharged by the electronics laboratory (23N219) ONLY.

Secure SODIMM Connector

The FPGA board is a critical component of the remote-controlled car project.
To ensure its proper functioning, the SODIMM connector must be inspected at
each test to verify that the FPGA board is securely connected. Loose connec-
tions can result in system malfunctions, data corruption, and potential damage
to the FPGA.

Battery Precautions

Help is available
In case of any questions or concerns regarding the security of the project, the
team members are encouraged to contact assistants and professors.

1.1 Consequences

It is crucial to emphasize that any deviation from the security measures outlined in this chapter will
result in consequences. It will involve the deduction of points from the final project grade.
This penalty serves as a reminder of the importance of adhering to the security protocols and
maintaining the integrity of the project.

In conclusion, security is a paramount consideration in the development of the remote-controlled
car project. By following these protocols and cooperating with professors, the team can create a
safe and secure environment for project development while minimizing the risk of damage.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 6/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

2.1

2.2

2.3

SuMMERSscHOOL 1/ RC Car

Introduction

The Kart module (SS1) is a Summer School module for students between the 2nd and the 3rd
semester. It is a home-made model car remotely controlled by a smartphone. The Appendix C -
Inspiration gives an overview of previous years karts.

The work of the students can be summarized in four main tasks:

« design and assembly of the chassis and the body

« analysis of the DC (DC) motor [1]

« configuration of the controlling Field Programmable Gate Array (FPGA) (FPGA) [2]

« completion and extension of the control Graphical User Interface (GUI) (GUI) on the smartphone

o This document only covers the configuration and programming of the control

electronics.

Objective

For the control electronics part there are three mandatory objectives:

« Control block for the DC Motor, see Section 5.2 - Pulse Width Modulation (PWM) Modulator
« Control block for the stepper motor, see Section 5.3 - 4 coils sequence generator

« Hall-Sensor counter, see Section 5.4

Evaluation

Fullfilling all mandatory objectives mentioned in Section 2.1 will result in a grade of 4.0. The
students are free to implement additional features. For every added feature, the grade will be
increased. Depending on the complexity of the feature between 0.1 and 1.0. until the maximum
grade of 6.0 is reached.

Optional features are described in Optional Features - Section 5.5.
Files

All necessary files can be collected via two methods:

1. Either downloaded via a zip file at the following link https://github.com/hei-synd-ss1/ss1-vhdl/
archive/refs/heads/main.zip [3] directly from github and extract it into your preferred location.

2. Alternatively a group specific repository can be created via github classroom by using the
following invitation link: https://classroom.github.com/a/fIOMXIU3. You repository can then be
cloned with git.

git clone https://github.com/hei-synd-ssl-stud/2025-ss1-vhdl-<groupname>.git

Make sure there is no space characters in the full projects path. HDL may hang
o while booting or files may not be loaded/saved correctly.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 7 /81

https://github.com/hei-synd-ss1/ss1-vhdl/archive/refs/heads/main.zip
https://github.com/hei-synd-ss1/ss1-vhdl/archive/refs/heads/main.zip
https://classroom.github.com/a/fI0MXIU3
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

2.4 Tools

The design environment for the control electronic consists of several tools.
« Mentor HDL designer for graphical design entry [4]

I Design Minager - Prject camples .8l 3
Fie Ean View HOL o Vimdo s
A EAMEE DN N ABY-UN-HB-OV- iR B -@
Dasian Explorar Using viewooin!- Defaul Viewpoini] 12| [5 |
Docign Unit ITypo Language _[Filo__[EREETTERE Nama @ My Tasks
= = PURRT = Bt ver (o R
V) ecoress_decode Block VHOL = affuart uert o Cenercte
[- cock duider Component VHOL = 0g st vert tofsiuc ¢ I
¢ § conrol_opercion Comperent VHOL 2U0 festanlion) 9 DesignChecker -
4 =3 su_neriace Blodk VHOL LR wer_top{stucy & ©'¥ DesignChecker Flow
[rolinerace Blodk VHOL SEu cor) R ModeiSim Flow
Slock vHoL GUO corelopersionan) tocsim Compila
202 clock_dviderfion) TR Hodtsin Compk -
B daress_dacodsitsl) M ModsiSim Simulcte. o
SRR s B Cuestosim Comple
Vo + P Ousstecin Flow s
u. | R VEl
= T — =

-
imation_Options_Window _Help Add Options Window Help

EIPAL Y YY)

i

Figure 1 - Mentor HDL Designer
« Mentor ModelSim for simulation [5]

wave - default

Eile Edit VYiew Insert Format Tools Window

DSHS s BBU (A% | SuRY | 4+ B oeilEB BPe 9 n| e
EX NI LY P

4 set

B

[0 ps 10228748 ps [Mow: 210 ns Delta: 0

Figure 2 - Mentor Modelsim
« Microchip Libero IDE for synthesis and programming|[6]

8% Domcniona 8

DO0OUEF BvOr a=mMCRPo 3| AP e [somowerne

Ay Courte2 bt
o 100000000

o rrusons e 0107010 Vs |

Figure 3 - Microchip Libero

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 8/81

https://eda.sw.siemens.com/en-US/ic/hdl-designer/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

2.5 Cabling

The default solution uses the following connection scheme:

Module PMOD Pins
Range Sensor PM1 8
Stepper End PM2 1-3-GND
DC Motor PM3 | Through PMOD-MotorDriver board
Stepper Motor PM4 | Through PMOD-MotorDriver board
Hall Sensor PM5 1
Buttons inputs PM6 5-6-7-8
Leds outputs PM7 Through PMOD-OD2 board
Servomotors outputs | PM8 Through PMOD-OD2 board

Table 1 - Default hardware Cabling (Kart.pdc)

It is possible to modify:
« Where each module is placed

« How many inputs and outputs exist

+ If custom pins are used

to connect the correct signals from the Hardware the toe FPGA you will have to modify the
Board/concat/Kart.pdc file during the Synthesis - Appendix III process.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1

9/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

System Architecture

The architecture is essentially split between two parts: the embedded electronic which drives the
kart and reads the various sensors, communicating with a smartphone to be controlled remotely.

NI-HH AR3000nAh 6.0V
LW 2020.05.08

android
—el
Figure 4 - System Architecture Overview
(The shown config is custom and does not correspond to Table 1)
Contents
3.1 Block diagramyooooiii 11
3.2 FUNCHIONS ... 12

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 10/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

3.1 Block diagram

(Optional) DC Mator .
.) Uttrasonic ranger nRF52840 * PuM \Dibridge +—12th\)/1\[7

Forwards PMOD
I Time based pulse each~50[ms] BLEchip » —L Driver »
» UART Right bridge
Stepper Motor
-(End of tum switch "ol oo
digitalon/off +VPAM
0(rot pressed) " " " " " " Eﬂ; PO g = StePPeT
I A(pressed) - river Motor
| m— = Battery current/voltage reader
Hall sensor — T Ic
0(southpole) [— FPG A — = |MCP3426A0
1(north pole)
— — — (Optional) Servomotors, leds, sensors...
| s s |

: Digtalo PMOD
(Optional) Buttons, sensors .. u u u u u u —_— 00000000

Digial0/1
L L
I I \ f

Figure 5 - Electronic Architecture

The system is centered around the FPGA which gets the following inputs:

« End of turn switch: used to initialise the angle of the wheels

« Hall sensor: combined with magnets, allows to calculate the speed of the car

« Ultrasonic ranger (optional): permits to detect distances and brake in case of an obstacle

+ Buttons, sensors ... (optional): any extra hardware which creates 0-3.3V digital inputs can be
wired to the FPGA and used internally for extra features

The followings are available on the board itself:

+ BLE chip: the FPGA communicates through UART with a nRF52849 BLE chip to link with the
smartphone

« Battery reader: a MCP3426A0 chip allows to read through I2C both the current and voltage
from the system

+ User leds (optional): 3 user leds can be freely controlled for debug purposes

Finally, outputs are:

« DC motor: the system is propulsed by a 12V brushed DC motor

« Stepper motor: the steering of the car is carried out by a 4-coils stepper motor

« Servomotors, leds, sensors ... (optional): any digital output can be wired to the FPGA through
the PMOD-OD2 board. This board can translate outputs into higher voltages and currents. The
selectable output voltages of this board are +3.3, +5 or +12V

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 11/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

3.2 Functions

The minimal system allows to communicate with the smartphone as well as operate all required

sensors and actuators. The system needs to:

« Propel the kart forward and backward with the help of the DC motor - Section 4.4.1 - and motor
driver PMOD - Section 4.4.3

« Steer the kart with the help of the stepper motor - Section 4.4.2, a motor driver PMOD board -
Section 4.4.3 - and the end of turn switch - Section 4.5

« Count the hall sensor pulses - Section 4.6 - to measure the speed

« Set registers correctly to communicate through the UART serial link with a custom communi-
cation protocol - Section 7 - with the smartphone over bluetooth - Section 4.7.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 12 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4 Hardware Components

Figure 6 - Kart PCB

Mechanic and Electronic

Use either:

» Nylon screws and risers to secure the boards to your Kart.

« Plastic washer between the risers and/or screws and any electronic board.

Contents
4.1 GOoOd PractiCesooviii i e e e 14
4.2 Motherboard (MB)ooiiiiiii i e 14
4 2.l POW T . e 14
4.2.2 SODIMM Daughterboard Connectoruuuuuiiiiiiiiiiiiiiiiiiinneeeeaa... 15
2.3 T O o 15
4,24 FPGA ReSEl ...t 16
4.2.5 UART Snifler 16
4.2.6 BLE SOCKETo 16
4.3 Dautherboard (DB)iiiiiiii ettt e 17
4.3 POW T .ttt e e e 17
4.3.2 PrOgramimingo.uuiemtn ettt ettt et et e e 17
4.3.3 Connection with Motherboard 17
7 2 S 1 18
Y] 1o o 19
R 10T 1Y/ o e 5 19
4.4.2 Stepper-MOtOr e 19
4.4.3 PMOD DC-Stepper Control board ... 20
4.5 End of turn sWitCh o 21
4.6 Hall SENSOT ..ot 21
4.7 Bluetooth Dongle NRF52840 e 22
4.8 SenSOrS & I/ OS ... 22
4.8.1 SeIVO MOtOr ..ot e e e 22
4.8.2 Custom modules 22

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 13 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

4.1

4.2

SuMMERscHOOL 1 / RC CAR

Good Practices

In order not to damage the hardware, strictly follow the Section 1 - Security Guidelines.
Motherboard (MB)

The Kart motherboard can receive any compatible FPGA daughterboard - Section 4.3 such as the
AGLN250 [7] one used during the Kart project. The Motherboard connects all pheripherals to the
I/Os and powers the system at the same time [2].

$334344 O 3433939
PMODS
Lo

FPGA
Reset

Serial NB 4~

PE ul ach 501 3
= BEE N
GND Rx Tx lConnected . o =+3U3 DTB
In Function = GND
[z]s]5] Il- 3 3

EIHII pnooz PMOD4 propg ON/OFF

Figure 7 - Motherboard PCB
4.2.1 Power

The main power entry point of the system is through the motherboard, either by using:
1. the two battery connectors with two +6V / 2400mAh packs put in series
2. the charger port with a +12V input from a regulated DC supply.

The +12V is then reduced to a +5V rail through a buck converter. Finally, the daughterboard is fed
with the +5V to provide a +3.3V rail.

4.2.1.1 Charging

Do not try to manually charge batteries while mounted on the motherboard.
A Charging batteries is handled by the electronic lab directly. Simply ask and hand
them your packs.

4.2.1.2 Power-on

A switch must be connected to the corresponding port to power the board. The +12V is then
transported to the PMODs and the buck converter through a 1.25A-T fuse. A green LED shows the
board power status.

Follow the tests guideline given under Section 6 before powering anything.
A If the fuse breaks, check for any short-circuit before replacing it and power-cycling
the circuit.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 14/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

4.2.1.3 Power State

An12C dual-inputs ADC converter (MCP3426A0) [8] is present on the board to read both the battery
voltage and the current consumption.

Access the data

The chip is read from the FPGA each second through dedicated I2C lines. The information can be
read from the smartphone at will by accessing the corresponding registers - Section 7.2.

4.2.2 SODIMM Daughterboard Connector

The daughterboard - Section 4.3 is connected to the motherboard through a SODIMM-200 (DDR2
RAM) connector.

4.2.31/0s

The board allows for multiple I/Os to be plugged following the PMOD wiring [9], slightly modified
to add a +12V rail, under the following form:

+ 4 dual connectors for direct plug (PMODs 5 to 8)

+ 3 dual connectors for flat-cables (PMODs 1, 3, 4)

« 1 single connector for flat-cable (PMOD 2)

PMODS signals P6 to P8 cannot be used with the AGLN250 FPGA. Use only the
upper row (PM8_1 to PM38_4).

The pins are described on the board itself and correspond to the following:

{12V £33V GND | P4 P3 P2 Pl

433V GND |\P8 P7 P6 P5

Figure 8 - PMOD pinning (header)

+3.3V GND P8 P7 P6 P5 P2 P4 +3.3V
9 2] R R
49994991 P RoR

=l

+12V +3.3V GND P4 P3 P2 P1 P1 P3 GND
Figure 9 - PMOD pinning (flat)

3.3V on the I/Os. Use a dedicated PMOD board if needed. They are presented in the

' At all time, ensure there is NO VOLTAGE FEEDBACK from anything else than
Appendix B.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 15/ 81

https://digilent.com/reference/pmod/start
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4.2.4 FPGA Reset
A small button allows the user to reset the FPGA from the motherboard.
4.2.5 UART Sniffer

Both Tx from the FPGA and the BLE module can be sniffed by wiring a dedicated UART-USB chip
to the provided headers or directly with an oscilloscope.

4.2.6 BLE Socket

The Bluetooth <= USB dongle - Section 4.7 [10] can be inserted in its dedicated socket to control
the Kart with a smartphone, or easily removed to be plugged in a PC directly. One can emulate
the BLE module with the help of a custom serial interpreter - Section 6.5 by simply plugging the
daughterboard in a PC through the USB-C. The communication is merged between both the PC
and the BLE module.

Trying to communicate simultaneously from the BLE module and the PC will result
J in undefined behavior (surely scrambled and wrong data read by the FPGA).

One can listen to what the FPGA communicates to the BLE module by opening a serial terminal on
the USB-C COM port, but not write on it simultaneously.

To listen to what the BLE module communicates, it must be plugged through a USB extension cable
to the PC and another serial terminal opened.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 16 / 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4.3 Dautherboard (DB)

The FPGA daughterboard embeds an Igloo AGLN250 chip [7] in a VQ100 package, driven by a 10MHz
clock.

Y
R
.®

AGL250|0THERS
SHORT OPEN

lIIIIIIIIIIIIIIIIIIIIIIII
BT 2939 41 48 89 63 78 89 99109119129139149159159 179 189

‘Imlnuhmhmi Imhmluuimlnmmmnnummmhmlu|||munmnnlmnlml“’

Figure 10 - Daughterboard PCB
4.3.1 Power

The board is powered either through a USB-C connector (+5V, providing a JTAG access along an
USB-UART converter [11]) or through the motherboard - Section 4.2 via an external +5V rail.

It will automatically resolve the path if both supplies are wired simultaneously, choosing the
motherboard rail in priority.

Internally, it creates a +3.3V rail used by both the FPGA and the motherboard, plus another +1.5V
rail for the FPGA core supply.

4.3.2 Programming

The board can be programmed by using Libero IDE - Appendix III and plugging a Microsemi
FlashPro 4 dongle on the dedicated 10 pins header.

It is also possible to use the USB-C connector with the help of OpenOCD and custom scripts.
Both the USB and the FlashPro can be plugged at the same time. The FlashPro gains priority over
the USB JTAG signals.

While using the FlashPro without the motherboard powered, it is necessary to plug
. both the USB-C and the FlashPro to be able to program the card.

4.3.3 Connection with Motherboard

The board is linked to the motherboard - Section 4.2 through an SODIMM-200 connector (the 200
gold fingers on the FPGA board) [2]. By design, it cannot be inserted the wrong way.
The connector pining is shown in the Kart Pinning Datasheet [12].

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 17/ 81

https://www.microsemi.com/existing-parts/parts/152633
https://www.microsemi.com/existing-parts/parts/152633
https://openocd.org/
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4.3.41/0
Reset

A button is found on the board to reset the FPGA.

Be careful when pushing it while it is inserted in a motherboard. Do not apply force
. on the SODIMM connector.

LEDs

A blue LED indicates that the board is powered (top right of the board), while a second found near
the USB connector shows in and out transaction over UART.

The red led indicates if the stepper end switch is pressed.

The yellow led toggles on and off when a magnet is rotated in front of the hall sensor 1.

The green led indicates if the smartphone is connected to the BLE module:

« It blinks when connected in the solution version

« It stays on when connected in the student version

PoR

The board also features a Power on Reset (PoR) circuitry that will detect low FPGA voltages and
reset it (discharged batteries, too high current consumption ...).

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 18 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

4.4 Motors

4.4.1 DC-Motor

The DC Motor is used to propel the kart forward. It is a brushed DC motor, running on +12V
and drawing a current of I ,, = 0.7A4 and I3, = 0.32A [1]. The PMOD DC-Stepper Motor Driver
allows to control the motor via a PWM Signal [13] through a H-Bridge [14].

Color | Pin
Red +
Violet -

Figure 11 - Modelcraft RB350018-2A723R DC Motor and its pining
4.4.2 Stepper-Motor

The Stepper Motor is used for steering the kart. It is a bipolar stepper motor with a step angle of
7.5° - 48 steps per rotation and a nominal current of I = 0.86 AQ5V with a R = 5.8Q2 [15].

It is attached to a 100:1 reductor gear which leads to an output axis with a step angle 0.075° - 4800
steps per rotation.

The motor is controlled with the PMOD DC-Stepper Motor Driver - Section 4.4.3 hosting a dual
full H-Bridge to control the 4 coils of the stepper motor.

The calibration can be performed using the End-of-Turn switch - Section 4.5.

Color | Pin
Coil 1
Blue | Coil 2
Black | GND
Brown | GND
Red [Coil 3
Yellow | Coil 4

Figure 12 - Nanotec SP3575M0906-A Steppermotor, coils and pining

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 19/ 81

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/H-bridge
https://en.wikipedia.org/wiki/H-bridge
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4.4.3 PMOD DC-Stepper Control board

The control board hosts a dual full H-Bridge [16].

The 6-pins connector is used to connect a stepper motor and the 2-pins one the DC Motor.

! Only one motor can be connected at any given time.

Row | Pin | Descr.] Row [Pin Descr.
2 | P1:NC 1 P5: Left Bridge A
4 |P2:NC 3 | Pé: Right Bridge A
6 | P3:NC 5 P7: Left Bridge B

Top | 8 |P4:NC |Bottom | 7 | P8:Right Bridge B
10 | GND 9 GND
12 3.3V 11 3.3V
14 12V 13 NC

Figure 13 - PMOD DC-Stepper Control board and pining

The Figure 14 shows the block diagram of the main component, the L298P:

ouT! ovt:)vz *Vﬁs}_’ 100nF omﬂ:)rs OU1$
2 3 & 3 14

+¥ss | 4

O—y Vret A

T
[

ad

1 2 4
q | .
e | " EnB
O
1 s 15 —°
SENSE AO_‘E.RSA l QRSB SENSE B $-5851/2
Figure 14 - PMOD DC-Stepper Control board
20/ 81

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1

https://en.wikipedia.org/wiki/H-bridge
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4.5 End of turn switch

The end of turn switch is used to identify the steering “zero” position. The used switch is a Omron
miniature high reliability and security switch [17].

Color Pin
Yellow | PMOD I/O
COM NO NC Yellow GND

Figure 15 - Omron SS-5T Miniature High Reliability and Security Switch and its pining

[L]

An internal pull-up must be enabled on the FPGA side.

4.6 Hall Sensor

One or two Hall sensors are used to track the distance driven by the kart. The SS311PT/SS411P
digital Hall-effect sensors [18] are operated by a magnetic field and designed to respond to alter-
nating North and South poles with their Schmitt-trigger [19] output.

They can be powered between 2.7Vdc to 7Vdc with an open collector output integrating a 10kohm
pull-up resistor already.

Color Pin
‘ Red | 3.3V power supply
Hall output
Black GND

Figure 16 - Hall Sensor Honeywell SS311PT and its wiring

-

No internal pull resistor should be enabled on the FPGA side.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 21/81

https://en.wikipedia.org/wiki/Schmitt_trigger
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

4.7

4.8

SuMMERSscHOOL 1/ RC Car

Bluetooth Dongle NRF52840

The nRF52840 Dongle is a small, low-cost USB dongle that supports Bluetooth 5.4, Bluetooth mesh,
Thread, Zigbee, 802.15.4, ANT and 2.4 GHz proprietary protocols [10], [20]. In this project it is
used to communicate with the smartphone. The output of the dongle is an UART serial link that is
connected to the FPGA. The communication protocol is defined in Section 7.

snan. Ll 3
£1)
.L N Qe
I CEe=
-' Silh. 4T T]
e dllmdtaR -
yro, 9
e ey

SEMICONDUCTOR|

AN +8&
b‘!;,m:,Ju
L

o m "el
.13 0.15/ 0.

www.nordicsemi.com

i

Figure 17 - NRF52840 Bluetooth Dongle

Sensors & I/0s

Various sensors can be mounted on the motherboard - Section 4.2 through the exposed PMOD -
Appendix B connectors.

Only +3.3V I/Os can be connected on PMOD connectors (either by directly plugging them into the
pin headers or through the IDC cables).

Pins 6, 7 and 8 of the PMOD8 CANNOT be used with the current FPGA.

4.8.1 Servo Motor

Servos are a great choice for robotics projects, automation, RC models and so on. They can be used
to drive custom mechanical parts of your RC-Car. The angle is controlled with the control pin. The
pulse width of a f = 50Hz signal defines the angle, see Figure 18.

Color Pin

Yellow | Control
Red 5V
Black GND

Figure 18 - Servo Motor and pining

Avilable ones are the Reely S-7361. Use boards like the PMOD-OD2 - Appendix iii to control such
devices.

4.8.2 Custom modules
Feeling adventurous?

You can wire other/custom boards to interface your Kart with the world. Feel free to propose your
ideas and discuss the fesability with a professor.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 22/ 81

https://www.conrad.ch/fr/p/reely-micro-servomoteur-numerique-materiau-entrainement-matiere-plastique-systeme-de-connecteur-jr-2273848.html
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

FPGA Design

At least the three different modules must be completed:

« The DC motor controller (Section 5.2) receives a prescaler and a speed value to build the
corresponding PWM and direction signals.

« The stepper motor controller (Section 5.3) receives a prescaler and the desired angle and builds
the coil controls signals.

+ The sensor controller (Section 5.4) manages I/O comprising the hall sensors to retrieve the
driving speed and the range finder to get the distance from an obstacle (optional).

Contents
5.1 TOPLEVEL ..o oot 24
5.11 Packages ... 24
5.1.2 Custom blOCKSoou i e 25
5.1.3 Testbenchesoooiiiii e 25
5.1.4 Embedded LEDSooiiiiiiii it e e 25
5.2 DC Motor Controller e 26
Fo 0 B T T T 26
5.2.2 PWM GeNeTationcouuuttitt ettt ettt e et et ees 27
5.2.3 Hardware orientationcooooiiiiiiiii 27
5.2.4 Bluetooth connection 27
5.2.5 ReSEAIt ...ttt e 28
o T LT 28
5.3 Stepper Motor Controllero 29
5.3.1 OVRIVIEW ..ttt ettt et ettt e e et 29
5.3.2 Driving COilsottt 30
5.3.3 Initialisation of the Kartcooii i e 31
5.3.4 Tasks SUMMATYottt ettt 32
5.3 TOSES ettt e 32
5.4 Sensors Controllerooiiiiiii i e 33
o B 1775 4 T 33
5.4.2 Hardware SEUPoooitttii 34
5.4.3 Hall COUNTETot ettt et e ettt 35
5.4.4 Ultrasound Ranger (Optional) ... 36
5.4.5 Servomotors controller (Optional) i 37
5.4.6 User functionalities (Optional) ... 38
5.5 Optional featuresooouuni i 39
5.5.1 DCMotor - Acceleration rampooouuuiieeiiiiin e 39
5.5.2 StepperMotor - Dynamic steering frequencycoooiiiiiiiieiiiiiiinnnn. 39
5.5.3 SBIISOTS . ettt ettt ettt et e e 39
554 OBNeT oo 40

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 23/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

5.1 Toplevel

The toplevel contains all elements. Except for special, custom functionalities, there is no need to
change anything. The left part is dedicated to the serial communication and the right one comprises:

« Stepper-Motor Controller

« DC-Motor Controller

« Sensor Controller

« Control Register Controller

i E
2
H

Figure 19 - RC-Car top-level

5.1.1 Packages

The system being more complex than those seen during laboratories, a lot of the constant, types,
sizes ... are stored in packages.
Those can be found in the Kart library, named Kart.pkg and Kart_Student.pkg,.

The Kart_Student package is the only one that may be modified to adapt the system to your needs.

Required modifications are explained under the impacted sections.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 24/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

5.1.2 Custom blocks

In the various parts presented below, blocks will have to be created as seen during laboratories.
There is one important rule:

! All blocks must have a unique name across ALL project libraries.

This is important as the synthesis tool will not be able to differentiate between two blocks with the
same name, leading to errors.

Also, think ahead when designing blocks: well-formed and fully functional blocks can be reused in
other parts of the project, which is a great way to save time.

Finally, it is possible to create different blocks content to test different functionalities without losing
your previous work. Right click the block = Open As = New View ... = Graphical View =-
Block Diagram. Then click on the block again => Change Default View => select your view.

Only one view can be active in the whole project at the same time. Different functionalities
require different blocks.

5.1.3 Testbenches
Some testbenches are made available in the corresponding *_test libraries.

Some are already filled with tests, while others are partially empty where only the clock and reset
signals are generated. It is up to you to fill them with the necessary tests to validate your blocks.

You are free to create as many extra testbenches you need to debug your system.
5.1.4 Embedded LEDs
The user can control three LEDs present on the Daughterboard - Section 4.3 from within the FPGA.

By default, those LEDs correspond to the following:

« A blue LED indicates that the board is powered (top right of the board), while a second found
near the USB connector shows in and out transaction over UART.

 The red led indicates if the stepper end switch is pressed.

+ The toggles on and off when a magnet is rotated in front of the hall sensor 1.

o The green led indicates if the smartphone is connected to the BLE module:
» It blinks when connected in the solution version
» It stays on when connected in the student version

You can change the signals connected to the ledsbDebug block in Kart/KartController to wire
your own and help debug your system.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 25/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

5.2 DC Motor Controller

The DC motor controller is in charge of the Kart’s propulsion, both in forward and reverse.

addressIn

dataln

regwr

dcMotorAddressToSend
devotorDataTosend
dcMotorSendRequest

dcMotorSendAuth

clock

reset testMode

DcMotor hwOrientation

dcMotorRegisters
I_regs

pwmStepsBitNb = DC_pwmStepsBitNb (positive)
speedBitib = DC_speedBitNb (positive)

Figure 20 - DC module top-level

For this, two signals are generated :
+ A pwm with a settable frequency whose duty-cycle is modified to control the speed
«+ A forwards signal to drive either forward or backward.

5.2.1 Overview

Since a PWM is used to drive the motor and the power transistors cannot switch at too high
frequencies the period must be controlled. For this, the block dcMotorPrescaler generates an en
signal to divide the clock frequency based on the DC motor prescaler register - Section 7.2 following

the formula:

fclk . 10MHZ
 prescaler 16 % prescaler

(1)

fPWM_DC = PWM

steps

The minimal value of the PWM signal is studied in another part of the project.

The block must then act on the duty-cycle of the generated PWM according to the speed signal. It
is set in the DC motor speed register - Section 7.2 and ranges from:

—15=0b1111'1111'1111'0001 to 15 = 0b0000'0000'0000'1111 (2)

The two output signals are then used to drive a H-Bridge [14], powering the DC motor.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 26/ 81

https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/H-bridge
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

5.2.2 PWM Generation

Create a structure which is able to:

« Extract the absolute value of the speed[MSB-1 : 0] signal

+ Generate the PWM on 16 steps, cadenced by the en signal

« Set the forwards signal to '1* if the Kart should drive forward, '0' otherwise

clk

PWM Cycle 0 X 1 X 2 X 3 X 14 X 15 X o
? speed %(14 //
3 v 2222 J) J \ /i /
| 7 | |]
. speed 7 2 i
2 e 220 i] \ [[I
A\ torvarts 77, I I I I
:gz speed % 0 X // -15
£ v 22222 I I I I /
2L forvts 72 7 7 / 7 -

Figure 21 - DC Motor timings diagram
=
\-T_g Draw the circuit of the dcMotorPwm block.

5.2.3 Hardware orientation

The mechanical design can either lead the Kart to drive forward or backward when a positive
voltage is applied to the DC motor.

In order to cope with this, a setup signal, normalDirection, is provided to the block.
normalDirection = '1' means that a positive voltage applied to the DC motor lets the kart drive
forwards.

.\Ti‘ﬁ; Update the circuit in order to cope for the different mechanical design possibilities.

The setup bit is configured in the hardware control register - Section 7.2.
5.2.4 Bluetooth connection
When the Bluetooth connection is lost, the DC motor should not turn to prevent any damage.

A control signal, btConnected, is provided to the block. When btConnected = '0', the DC motor
must stop.

If the btConnected signal rises back to '1', the motor must not move until the speed register is
modified. Else the Kart would dangerously resume moving without the user being in control.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 27/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

The BT connection bit is given by the hardware control register - Section 7.2.

The Figure 22 shows a timing diagram corresponding to the behavior of the DC motor controller
when the Bluetooth connection is lost and then re-established:

I I S I A O I I D O O D D I

E (BTConnected a // /
'go\ speed \\ speed 1 // X speed 2
E (speed_mem /AZ}: // speed 1
o) I
_% | speed_notequal % // ,CI \
jg (dc_speed \ speed 1 // X \ speed 2
: 3 —
-é L dc_en < // A
———— Go speed 1 + Stop + Gospeed 2 —i

Figure 22 - Bluetooth disconnection timing diagram

=2 Update the circuit in order to stop the motor on connection loss and resume only

*”\ after the connection is resumed AND the speed modified.

5.2.5 Restart

When the Android application connects or the user triggers the signal manually, it sends a restart
command to the Kart. To reflect this, the signal restart rises to 1 and stays on as long as the stepper
motor did not hit the end switch.

Since the user has during this time no control, the DC motor must not move at all.

When the signal falls, the motor must not move until a new speed has been sent, mimicking the
behavior as when the bluetooth disconnects - see Figure 22.

\%" Update the circuit in order to stop the motor when restart = 1 and resume only
\’_l after the connection is resumed AND the speed modified.

5.2.6 Tests

= Refer to Section 6.1.1 - DC Motor testing to test your block fully before deploying

\’_l it on the FPGA.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 28/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

5.3

addressin
dataln
regwr

stepperAddressToSend

stepperDataToSend

SuMMERscHOOL 1 / RC CAR

Stepper Motor Controller

The stepper motor controller is in charge of the Kart’s steering to reach the desired angle.

eeeee

testPrescalerBitNb = STP_testPrescalerBitNb _(positive)
viderBitNb = STP_dividerBitNb (positive)

wOrentson_CTRL RESTART T)

angl = STP_angleBitNb (positive)

Figure 23 - Stepper module top-level

For this, five signals are generated to control the hardware and 2 signals to give feedback to the
software:

« coil1l, coil2, coil3 and coil4 power the different coils of the stepper

- magnetizing_power defines the mean voltage applied to active coils

« reached is set to '1' when the target angle is reached

« actualAngle gives the current angle of the stepper motor

5.3.1 Overview

The coils must be powered in sequence to allow the stepper to rotate, but due to the nature of the
wiring, switching coils too fast may result in it slipping, i.e. the motor does not have the time to
join the magnetized coil before another one pulls it back.

For this the block stepperMotorDivider creates an enStep signal which pulses at a frequency given
by the prescaler register following the formula:

Joase _ 100kHz
prescaler prescaler

(3)

f PWDM _step =

The user must then, based on this signal and the targetAngle set in the stepper motor target angle
register - Section 7.2, actuate the coils in the right order to join the given position.

It must keep track of the current angle itself since no external sensor gives this information, and
reflect it in the actualAngle output to be sent to the smartphone, setting the signal reached to '1"
when the angle is reached.

Finally, magnetizing coils for too long will heat the motor up. When the kart is not turning, the
consumption can be minimized by reducing the value of the magnetizing_power signal.

angle is 4096 (12 bits), which corresponds to 307° on the current 4800 steps motors.

o The angle values represent the number of steps of the steppermotor. The maximum
The stepper end switch represents the zero position - see Section 4.4.2

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 29/ 81

coil2
coil3

magnetizing_power

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

5.3.2 Driving coils

To control the stepper, one coil at a time should be magnetized, known as wave drive.

Other driving methods such as full-step and half-step are also allowed. In such case,
knowing that multiple coils may be active at the same time, you NEED to request
for a new fuse to be installed on your board. The default one is not able to handle
such current draw.

enstep / i i /[i i I
target 0 JX 100 I X 50 I X 0
coilt i [
coil2 \ I i
coils /) J
coild I 7
power 6 X /i 15 Vi
actual 0 X 1 X 2] X s X 50 X1 X 0
reached Vi I J/

Figure 24 - DC Motor timings diagram

Each time the signal enStep pulses, the coils must change state in the correct direction to reach the
target. For that, a counter must remember how many steps have been taken until now and write it
in the vector actual. This vector is always positive and given on 12 bits.

The flag reached should:
. fall to '0' when target is not the same as actual
« rise to '1' when target is the same as actual AND the last step has been fully taken

Coils must always be magnetized enough, i.e. at least one enStep duration long to avoid stacking

up drift.

The magnetizing_power signal must be set to a value between 0 and 15, 0 being no power and 15
the highest. It should change when the motor is in idle compared to when in movement.

The vector actual and the flag reached are both used internally to trigger events
which will transmit their values to the smartphone. A mishandling of those signals

[L J

will result in a flood of the communication system, which may in turn imply loss of
data with the smartphone, commands not updating and the GUI freezing because
of too many interrupts.

=
\-25; Draw the circuit of the angleControl block.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 30/ 81

https://en.wikipedia.org/wiki/Stepper_motor#Phase_current_waveforms
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

5.3.3 Initialisation of the Kart

After startup, the system does not know where the wheels are. The Kart cannot be controlled until
a restart phase is performed. During the initialisation the wheels are turned in the direction of the
stepperEnd switch until it is reached. The angle is then set to zero or target*2 - see Table 2. The
target vector being already set, the wheels will then position themselves in the middle of the Kart.
The target value depends on the hardware setup of the steering made on the smartphone.

5.3.3.1 Restart signal

The initialisation phase is activated by the restart signal coming from the hardware control
register - Section 7.2. This bit is set by the remote control smartphone after a successful Bluetooth
pairing, together with the appropriate sensorLeft and clockwise setup bits as well as the stepper
motor period register, in order for the FPGA hardware to discover the zero angle position. A restart
could also be issued anytime from the smartphone to recover from events like excessive drift of
the wheels.

The restart signal remains in a high state until the stepperEnd switch is pressed.
5.3.3.2 Hardware orientation

The mechanical design allows for the following variations:
« the stepperEnd switch can be placed at the maximum steering angle on the left or right side,
which can be setup with the sensorLeft signal.

+ clockwise changes the coil sequence 1 => 2 => 3 =>4 => ... (clockwise = '1')to 4 = 3 =
2=1=>..(clockwise = '0'. Depending on how the motor is mounted, the steering will turn
to the left or right.

The corresponding setup bits are configured in the hardware control register - Section 7.2.

The following 4 combination of those signals changes the restart behaviour:

sensorLeft | clockwise Situation Reset phase

0 0

Reverse coils order during reset
Reset actual = 0
Normal coils order to reach target

Normal coils order during reset
Reset actual = target*2
Reverse coils order to reach target

Normal coils order during reset
Reset actual = target*2
Reverse coils order to reach target

Reverse coils order during reset
Reset actual = 0
Normal coils order to reach target

Table 2 - Stepper motor hardware configurations

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 31/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

The actual vector can only be positive, so there are two cases where it is reset to 0, and two
others where the reset value is target = 2. This is due to the fact that the stepperEnd switch is
once on the minimum steering position and once on the maximum steering position. The minimum
steering position is 0 and the maximum steering position is target*2. The target value during
restart represents the central position of the kart, which means target*2 is the maximum steering
position.

A mux is already provided generating the signal zeroingValue to load the correct value on reset.
5.3.4 Tasks Summary

1. After startup, do not move the wheels until a restart signal is received
2. Upon detecting a restart, the system needs to transistion into a restart state
3. Move the wheels according to the sensorLeft and clockwise signals to hit the stepperEnd
switch
+ Once it is hit, the restart signal falls. If the switch is already pressed when restart rises, it
stays on for only one clock period, letting the actual vector to be reset.
4. When hitting it, reset the actual vector to the value given by the zeroingValue signal depending
on sensorLeft and clockwise
5. Move according to the target while counting and outputting the actual value
« When idle, set the magnetizing_power to a lower value
« When moving, set the magnetizing_power to a higher value
« When a new position is requested, set the reached signal to '0' until reaching it
« When the position is reached and the last step is fully taken, set the reached signal to '1'

During the restart phase, the steering motor will not try to turn further than what the kart’s
mechanical structure allows because of the stepperEnd switch. In the other direction, it is the
programmer’s task not to request a too large target angle.

[/ [/

restart

stepperEnd J

Figure 25 - Stepper restart sequence diagram
\zﬁy Update the circuit to integrate the restart phase.

5.3.5 Tests

= Refer to Section 6.1.2 - Stepper Motor testing to test your block fully before
)\ deploying it on the FPGA.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 32/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

5.4 Sensors Controller

The sensors controller handles the other I/Os of the system:

« Generic, 0-3.3V digital inputs. Up to 16 inputs.

+ Generic, 0-3.3V digital outputs. 8 available outputs, shared with servomotors control outputs.
+ Servomotors control signals outputs. 8 available outputs, shared with generic outputs.

+ User dedicated outputs. 8 available 16 bits registers.

+ Dedicated I2C battery voltage and current reader.

+ Dedicated hall sensors reader.

+ Dedicated supersonic range finder pulse reader.

IO_‘- servos

sensorssendRequest fe— haipuises

sensorsSendAuth

clock
reset
e

a
Sensors sensorb = SENS_hallSensorNb ~ (positive)
nnnnnnn CountBIthb = SENS_hallCountBitNb (positive)

Satten2sou

Sensors,
ultrasoundRanger

Lrange

4
range_treqai &
g

batterySCiln

batterySDaln

Figure 26 - Sensors module top-level
5.4.1 Overview

5.4.1.1 Outputs

The leds vector is controlled by the smartphone and used for generic outputs at will. It can simply

set those on or off, but also handle toggling them at predefined frequencies. See the LEDx registers
- Section 7.2.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 33/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

The servos vector is controlled by the smartphone and used for servomotors outputs at will. It
recreates the required signal pulses to control servomotors. See the SERVOx registers - Section 7.2.

The user_outputs vector may contain any output pins for user-specific features not related to
generic outputs, e.g. controlling an SPI leds strip, send UART commands to a module ...

5.4.1.2 Inputs

The endSwitches vector is used as generic inputs. Each transition of their value is forwarded to the
smartphone.

As the state changes of the endSwitches are transmitted to the smartphone, these
inputs are not designed for rapid fluctuations. Swift changes could potentially

[L J

overwhelm the communication system, leading to issues such as data loss with the
smartphone, commands failing to update, and the graphical user interface (GUI)
freezing due to an excessive number of interrupts.

The freqDividerWForceOnStart along the batteryLevelInterface blocks handle communication
with the motherboard’s 12C voltage and current reader - see Section 4.2.1.3. Both values are read
periodically, typically each second, and forwarded to the smartphone when they change from at
least a predetermined value.

The hallPulses vector reflect the state of the hall sensors. They are used to determine the Kart’s
speed / slipping.

The distancePulse signal is used to read the distance from the ultrasound ranger. It can detect
obstacles in front or back of the Kart while giving a range estimation of the obstacle.

5.4.2 Hardware setup

Based on which sensors you intend to use or not, modify the Kart_Student package in the Kart
library:

+ Set STD_HALL_NUMBER to the desired number of hall sensors to use (1-2)

+ Set STD_ENDSW_NUMBER to the desired number of digital inputs to use (0-16)

« Set STD_LEDS_NUMBER to the desired number of digital outputs to use (0-8)

« Set STD_SERVOS_NUMBER to the desired number of servomotors to use (0-8)

» When using both LEDs and servos, the sum of both must not exceed 8.
| » Registers will be stacked in the order LEDs then servos. E.g.: 3 LEDs and 2 servos
[]
= LEDs will use registers LEDS_1 to 3, and servos registers SERVOS_4 and 5.

\.\Tf_zﬁy Setup the Kart_Student package.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 34 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

Hall 1

——

Hall 2

——

SuMMERSscHOOL 1/ RC Car

hallPulse[1] / \ / \ / \ /
zeroPos[1] /[\
counterl 0 X 1 X 2 X 3 X 4 X 5 X

hallPulse[2] /
zeroPos(2] /A
counter2 0 X 1 X 2 X 0 X 1 X

5.4.3 Hall counter

The hall sensors presented in Section 4.6 create pulses based on the speed of the Kart. They are first
passing through the hallPulsesFilter block which is implemented and does the following:

+ Get the raw pulses from the hall sensors

« Debounces the input to avoid false transitions

+ Transmits the filtered pulses to the hallCounters block

The hallPulses vector contains one bit per hall sensor. Using one or two sensors is up to the user.

The second one can be used to detect slipping, calculate the covered path ...
Even if you only use one hall sensor, the second exists, just held to '0" at all time.

The following behavior must be implemented:

+ The hallCounters block receives the hallPulses vector and must count both the rising and
falling edges of the pulses for each sensor separately.

« If the vector zeroPos is set to '1' for a particular sensor, the corresponding counter must reset
to 0.

The two hall counters values must be concatenated to the hallCount vector. The second counter
needs to be shifted by 16bit: hallCount = (hallCount, <« 16) + hallCount;. It must AT ALL
TIME reflect the current counters values.

o

>
o

>

hallCount 0x0000 X 0x0001 X ox0002 0x0103 X 0x0104 X 0x0205 X_ox0006 X ox0000 X 0x0101

X_ox0201

Figure 27 - Hall sensors pulses
\= B
\-'_3 Draw the circuit of the hallCounters block.

5.4.3.1 Tests

= Refer to Section 6.1.3 - Sensors testing to test your block fully before deploying it
1 on the FPGA.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 35/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

5.4.4 Ultrasound Ranger (Optional)

An ultrasound ranger is useful to detect obstacles in the front or back of the Kart. Based on the
PMOD-MAXSONAR board from Digilent, it can be plugged into any one-row PMOD connector.

The ranger outputs a pulse named PW whose length is to be counted. The distance to an object is
then determined following the rule 1475 = 57.84£2

There is no start/stop indication: the sensor continuously outputs pulses between 0.88 and 37.5 ms
long, each 49 ms.

|

. |
Pin 4 1
PWM :
)

| |
| |

Pulse Width >0.88ms : :
1 1
1

)
Time ~lms ~2ms ~39ms ~44.3ms ~49ms

Figure 28 - MaxSonar PW pulse

It must implement the following behavior:

« Wait for the signal startNextCount to be '1' (around each 333 [ms]), indicating that the next
pulse must be registered. This signal intends to slow down updates of the distance signal to
avoid flooding the communication system.

+ Wait for the next incoming pulse from distancePulse

+ Count the pulse length in microseconds. Counting clock periods would overflow the 16-bit register.

« Update the distance vector with the new value

It is up to the user to decide wheter to send invalid pulses, i.e. calculated time > 37.5 [ms] or < 0.88
[ms] by sending the calculated value nevertheless, a predefined value instead, nothing ...

Make sure to update the distance vector only after startNextCount has been de-
o tected and the whole pulse has been counted to avoid flooding the communication.

distancePulse // / // \ // / // \—
startNextCount /_\ // //

distance Value0 X Valuel

Figure 29 - Distance sensor timing diagram
=
\?’? Draw the circuit of the ultrasoundRanger block.

5.4.4.1 Tests

-\?_ZZ‘) Refer to Section 6.1.3 - Sensors testing to test your block fully before deploying it
A

g on the FPGA.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 36/ 81

https://digilent.com/reference/pmod/pmodmaxsonar/start
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

Internals

SuMMERSscHOOL 1/ RC Car

5.4.5 Servomotors controller (Optional)

Servomotors are easy to control and allow for many applications requiring circular motions. Those
can also be transformed easily into linear ones with the help of a bit of mechanic.

A typical servomotor requires a pulse each 20 [ms] whose duration ranges from 1 [ms] (-90°) to 2
[ms] (90°) as shown in the following figure:

ge———— 20ms(50Hz) —— - h

a<— 1Ims —»b

= [y

ce—— 15ms —»d

et——2ms ————pf

® we [_J [\ _J

Figure 30 - Servo Motor Control pulse

Each model of servomotor may diverge from the standard, having wider or narrower
angles ranges. It is up to you to check that the model you intend to use fits your expecta-
tions. Also, each one has a specific maximal torque you must not exceed.

' Do not try to send pulses outside the standard range, as the servo may overheat
. and break.

The block servoController must implement the following behavior:
« Set the output servoto '0"
» Wait for the signal pulse_20ms to rise
+ Set the output servo to '1' and begin counting
+ Once the count value corresponds to the one given in countTarget, set the output back to '0"
» If the countTarget changes during the pulse generation, wait for the next pulse_260ms to take
it into account
+ Wait for the next pulse_20ms to start again

pulse_20ms /_\ // /_\

count_target 10000 X 15000

pulse 1 us [\ [/ J
target X 10000 X 15000
counter A 0 X 1 X 9999 I X 10000 X 0
Servo / // \ /—

Figure 31 - Servomotors timing diagram

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 37/ 81

https://www.youtube.com/watch?app=desktop&v=2vAoOYF3m8U
https://en.wikipedia.org/wiki/Servo_control
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

=
\-__fj Draw the circuit of the servoController block.

5.4.5.1 Tests

= Refer to Section 6.1.3 - Sensors testing to test your block fully before deploying it
*’\ onthe FPGA.

5.4.6 User functionalities (Optional)
The userCustomBlocks can be used to create specific user features.

As input, the registers signal is an array of 8 times 16 bits registers that can set by the smartphone
through the USERx registers - Section 7.2.

As output, the user_outputs signal is a vector of STD_USER_OUTPUTS_NUMBER. It is already wired up
to the top level, making it possible to link your signals to physical pins of the FPGA.

stant to how many signals you intend to output from the userCustomBlocks block.

‘ 0 Modify the Kart_Student package by setting the STD_USER_OUTPUTS_NUMBER con-

Internally, simply wire you signals one next to the other in the user_outputs vector.

You may use those to:

« Control an SPI LED strip

+ Send UART commands to an external module
« Control seven segments displays

« Create specific tones with a buzzer

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 38/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

5.5

SuMMERSscHOOL 1/ RC Car

Optional features

Fullfilling all mandatory objectives mentioned in Section 2.1 will result in a grade of 4.0. The stu-
dents are free to implement additional features. For every added feature, the grade can be increased
depending on the quality of the feature, until the maximum grade of 6.0 is reached. Hereafter some
ideas, but feel free to imagine your own.

5.5.1 DCMotor - Acceleration ramp

The DC motor controller can be improved by adding an acceleration / braking ramp. This feature
allows the motor to smoothly modify its speed until the desired one is reached, avoiding sudden
movements and protecting it from high current peaks and is done FPGA-side only

Supporting it gives you up to 1.0 on your grade if you can show a correct behavior by:

« Showing a correct acceleration ramp in simulation when the speed register is modified, even if
it is modified while already ramping to another speed

« Creating a DC ramp through the use of the smartphone does not count as an FPGA feature

5.5.2 StepperMotor - Dynamic steering frequency

The stepper motor makes use of a fixed frequency to move the wheels, but it cannot be too high
since the motor would slip due to sudden acceleration. But if the motor begins moving with a slow
frequency, it can then be increased with the motor already being in rotation since the inertia helps
reduce the acceleration needed.

Supporting it gives you up to 1.0 on your grade if you can show a correct behavior by:

« Showing a correct simulation where the frequency changes when a target is set, and how it
reacts if the target is modified while the motor is already moving

« Modifying it through the use of the smartphone does not count as an FPGA feature

5.5.3 Sensors
5.5.3.1 Ultrasound ranger

Implementing the ultrasound ranger - section 5.4.4 can be done FPGA-side only, but a smartphone
use case is recommended.

Supporting it gives you up to 0.5 on your grade if you can show a correct behavior by:
« Using the USB tester - section 6.5 to show that the distance is correctly transmitted when moving
an object in front of the ranger
« Demonstrating how it works through a smartphone implementation
» By using it as a parking sensor, audibly or visually, showing that the distance from an object
impacts the feedback on the smartphone
» Displaying the live distance in a label / animation
» Other functionality proving that the ranger is correctly implemented

5.5.3.2 Servomotors

Implementing the servomotors - section 5.4.5 can be done FPGA-side only, but a smartphone use
case is recommended.

Supporting it gives you up to 0.5 on your grade if you can show a correct behavior by:
« Using the USB tester - section 6.5 to move it to various positions on demand
+ Demonstrating how it works through a smartphone implementation

» By moving it to various positions on demand: slider, buttons, ...

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 39/81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

» Other functionality proving that the servomotor is correctly implemented through non-
continuous, various positioning

5.5.4 Other

You may propose any other feature to implement which add “something” to your system:
« A special way to control part of the Kart (0.5-1.0)

« SPI leds strip control (2.0)

« Led blinking (0.1-0.5)

» New sensors support requiring VHDL implementation

Discuss those with a supervisor to establish the feasibility and the grading for the task.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 40/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Testing

Three types of testers are available to fully validate the design before flashing the FPGA .
Per module simulation - specific functionalities of the circuit:

« DC Motor Module - Section 6.1.1

« Stepper Motor Module - Section 6.1.2

« Sensors Module - Section 6.1.3

Circuit simulation - overall circuit behavior:
 Overall circuit (modules only) - Section 6.2.1
« Full circuit (with COM emulation) - Section 6.2.2

Finally, a USB tester - Section 6.5 allows to test and control the Kart by using a PC to emulate the
smartphone by connecting it directly via USB.

Always complete simulations tests before any wiring and programming of the
board. Always use a stabilised DC power supply while developing.

Contents
6.1 Permodule 42
6.1.1 DC Motor testingouut et 42
6.1.2 Stepper Motor testingcooouuiiiiii 43
6.1.3 Sensors Controller teStingooiiiiiiii it 45
6.2 WHOLE CITCULL ettt ettt et ettt ettt e ettt 48
6.2.1 Modules Simulationo 48
6.2.2 Full-board oo 50
6.3 Setting up the board 51
6.3.1 T/Os cONfigUrationuuuuut 51
6.3.2 PINING SETUP . ..ottt e 51
6.3.3 Onboard LEDSttt 52
6.4 Programming the board 52
6.5 USB commands emulationoooiiiiiiii 53
6.5.1 QUICK TSt ...t 54
6.5.2 Registers R/W 54

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 41/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

6.1 Per module

Each module can be tested individually.

6.1.1 DC Motor testing

The DC motor functionality can be tested through the DCMotor_test => dcMotor_tb block.

prescalerBitNb = DC_prescalerBitNb ~ (positive)

forwards
DcMotor
dcMotorPrescaler
I_div

dcMotorPwm
1.DUT

itNb = DC_j itNb ~ (positive)
speedBitNb = DC_speedBitNb (positive)

:

DcMotor_test g_clockPeriod = 1.0/CLOCK_FREQUENCY * 1 sec (time)

dcMotor_tester
I_tester

Figure 32 - DC Module Testbench

The corresponding simulation layout file for Modelsim is available under $SIMULATION_DIR/

DCMotor/dcMotor.do. Predefined signals are color coded:

The blue header shows which test is performed

+ The yellow signals are those generated by the tester

The purple signals are the one generated by your implementation
The green signals are internal ones

The tester DCMotor_test => dcMotor_tester only generates clock and reset. It must be filled by

yourself - you should notably test:

Setting a correct prescaler value and the btConnected signal

Setting a few positive speeds values

Setting a few negative speeds values

Redo the tests with the normalDirection inverted

Holding the restart signal at '1' and ensure the motor stops

Releasing the restart signal and ensure the motor does not move until a new speed is sent
Losing the btConnected signal and ensure the motor stops

Retrieve the btConnected signal and ensure the motor does not move until a new speed is sent

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 42 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

6.1.2 Stepper Motor testing

The stepper motor functionality can be tested through the StepperMotor_test =-
stepperMotorController_tb block.

testMode

Stepper
stepperMotorController
I_stepper

Stepper_test
stepperMotorController_tester
I_tester

Figure 33 - Stepper Module Testbench

The corresponding simulation layout file for Modelsim is available under $SIMULATION_DIR/
Stepper/stepperMotorController.do.

. | HiALF OF THE TESTS v | [Re.), [Ends.., || To (5.0 Ren. [[T, [Resdt v | Tum 20 v | Thrn 10 o End bf ..

UL iy gyrouuuiuugy LI UL
Ly UL LU gy 11
[Uy ooy Iy
TP UL UL LU U
i {15 1 [13s 1 15 1 I ET I
250 0 2 1
[} 0 0 0 |_l_1m
] |
(TN

Figure 34 - Stepper Module Simulation

+ The blue header shows which test is performed (correspond to signal testInfo in the tester)
+ The yellow signals are those generated by the tester

« The purple signals are the one generated by your implementation

+ The green signals are internal ones

6.1.2.1 Testing

The tester is already pre-filled and performs the following tests:

+ The prescaler is set, outputting pulses on stepEn

« Waits a bit, expecting the coils to not move and the magnetizing_power to be reduced

+ The restart signal is set to '1', expecting the coils to turn as 4 = 3 => 2 = 1 => 4... and the
magnetizing_power to be increased

+ The stepperEnd is pressed, releasing the restart signal, expecting the coils to stop moving and
the magnetizing_power to be reduced

+ A target of 250 is set, expecting the coils to move in order 1 => 2 => 3 =>4 => 1... and the
magnetizing_power to be increased

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 43 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

+ clockwise is toggled, expecting the coils to move in order 4 => 3 = 2 =>1 = 4... and the
magnetizing_power to be increased

+ The restart signal is set to '1', expecting the coils to turn as 4 => 3 => 2 =- 1 => 4... and the
magnetizing_power

» The stepperEnd is pressed, releasing the restart signal, expecting the coils to continue turning
asl = 2 =3 = 4 = 1... and the magnetizing_power to be increased

« A reset is performed

« The sensorLeft signal is set to 'l', expecting the coils to stop moving and the
magnetizing_power to be reduced

+ The restart signal is set to '1', expecting the coils to turn as 1 => 2 => 3 = 4 = 1... and the
magnetizing_power to be increased

+ The stepperEnd is pressed, releasing the restart signal, expecting the coils to stop moving and
the magnetizing_power to be reduced

+ A target of 250 is set, expecting the coils to move in order 1 => 2 => 3 =>4 => 1... and the
magnetizing_power to be increased

+ clockwise is toggled, expecting the coils to move in order 4 => 3 = 2 =>1 = 4... and the
magnetizing_power to be increased

» The restart signal is set to '1', expecting the coils to turn as 1 = 2 = 3 = 4 => 1... and the
magnetizing_power to be increased

« The stepperEnd is pressed, releasing the restart signal, expecting the coils to continue turning
as4 = 3 = 2 = 1 = 4... and the magnetizing_power to be increased

« A reset is performed

« With clockwise set to 0 and sensorLeft set to 0, the target is set to 20, expecting the coils to
move in order 1 = 2 => 3 = 4 => 1... and the magnetizing_power to be increased. When the
count is 20, the reached signal should be set to '1' and the magnetizing_power should be reduced

» The target is set to 15, expecting the coils to move in order 4 => 3 = 2 => 1 => 4... and the
magnetizing_power to be increased, the reached signal falling. When the position is reached,
teached should be set to '1' and the magnetizing_power reduced

Transcript

The transcript window gives you details on if automated tests passed or not:

« For the Coill.. .4 signals, you get Coil direction OK or Coil direction error.

« For the reached signal, you get Reached flag OK or Reached flag error.

« For the actual signal, you get Position readback OK or Position readback error.

Automated tests are here to help you debug your design. Following your imple-
mentation choices, they may give wrong logs.

(7 In any case, you CANNOT count on automated tests only. Always validate
your design by checking your signals.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 44/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

6.1.3 Sensors Controller testing

The Hall Sensor, Ultrasound Ranger and servomotors outputs each have their own tester in the
Sensors_test library.

Hardware setup
Remember to have set constants based on which sensors you use. For this, modify
0 the Kart_Student package in the Kart library:
o Set STD_HALL_NUMBER to the desired number of hall sensors to use (1-2)
« Set STD_SERVOS_NUMBER to the desired number of servomotors to use (0-8), at least
1 to test the block

6.1.3.1 Hall Sensor

The Hall Sensor functionality can be tested through the hall_tb block.

position hallPulses

zgroPos o

Sensors
hallCounters
1_DUT

sensorNb = SENS_hallSensorNb (positive)
countBitNb = SENS_hallCountBitNb (positive)

E

Sensors_test
hall_tester
I_tester

g_clockPeriod = 1.0/CLOCK_FREQUENCY * 1 sec (time)

Figure 35 - Hall sensor Testbench

The corresponding simulation layout file for Modelsim is available under $SIMULATION_DIR/
Sensors/hall.do. Predefined signals are color coded:

« The blue header shows which test is performed

+ The yellow signals are those generated by the tester

+ The purple signals are the one generated by your implementation

+ The green signals are internal ones

The tester Sensors_test = hall_tester only generates clock and reset. It must be filled by

yourself - you should notably test:

+ Create pulses mimicing the hall sensor for all your sensors by writing to hallPulses

+ Count all the rising and falling edges of those pulses

+ Ensure the position signal always reflect the concatenation of your counters like position(31
downto 16) = halll & position(15 downto 0) = hall2

+ Ensure the counters are reset when the signal zeroPos is '1' for a sensor

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 45/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

6.1.3.2 Ultrasound Ranger (Optional)

The Ultrasound ranger functionality can be tested through the ultrasound_tb block.

distancePulse

startNextCount

Sensors
ultrasoundRanger
I_range
rangeBitNb = SENS_rangeBitNb (positive)
divideValue = SENS_RANGEFNDR_CLK_DIVIDER (positive)
Sensors
rangerSubsignals
I_range_freqdiv

testMode

A

:

Sensors_test
ultrasound_tester
I_tester

g_clockPeriod = 1.0/CLOCK_FREQUENCY * 1 sec (time)

Figure 36 - Ultrasound ranger Testbench

The corresponding simulation layout file for Modelsim is available under $SIMULATION_DIR/
Sensors/ultrasound.do. Predefined signals are color coded:

« The blue header shows which test is performed

 The yellow signals are those generated by the tester

 The purple signals are the one generated by your implementation

+ The green signals are internal ones

The tester Sensors_test = ultrasound_tester only generates clock and reset.

The block rangerSubsignals generates a pulse each 100 clocks to simulate when the user should

be updating the distance vector or not.

It must be filled by yourself - you should notably test:

» Generate a known length distancePulse signal, smaller than the 100 clocks of the
rangerSubsignals block, after startNextCount has created a pulse

« Calculate pulse length and ensure it is correctly stored in the distance vector afterwards

+ Generate two consecutive pulses, one right after startNextCount pulses and the second following
close. Only the first pulse value should be stored in the distance vector

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 46/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

6.1.3.3 Servomotors (Optional)

The servomotor functionality can be tested through the servo_tb block.

Sensors
servoController
I_servo_controller

Sensors_test
servo_tester
I_tester

g_clockPeriod = 1.0/CLOCK_FREQUENCY * 1 sec (time)

Figure 37 - Servomotor Testbench

The corresponding simulation layout file for Modelsim is available under $SIMULATION_DIR/
Sensors/servo.do. Predefined signals are color coded:

« The blue header shows which test is performed

+ The yellow signals are those generated by the tester

« The purple signals are the one generated by your implementation

 The green signals are internal ones

The tester Sensors_test => servo_tester generates clock, reset, and pulse_20ms each 30000

clock cycles for the simulation.

It must be filled by yourself - you should notably test:

+ Set a target and wait for pulse_20ms - the servo signal should stay low

+ Once the pulse_20ms arrives, ensure that the servo signal goes high for a certain amount of time,
then goes low again according to the count_target vector value

« Wait for pulse_20ms to arrive and try changing the count_target during counting - the servo
signal should change according to the first count_target value and only on the next pulse_206ms
take the new value into account

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 47/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

6.2 Whole circuit

6.2.1 Modules Simulation

In addition to the dedicated modules testers, the overall behavior can be tested through the
Kart_test = kartController_tb block.

watchdogError

badCRC

coill

coil2

coil3

coil4

stepperEnd

pwm

forwards

hallPulses

distancePulse

Kart
kartController
I_Kart

batterySDaOut
batterySDaln

batterySCIOut
batterySClIn

Kart_test

kartController_tester_UVM

!t—rta"hsstaecrmonl,enqth 150 (positive)
uvmCommands "SSIMULATION DIR/Kart/UVM/uvmCommandsStudent.txt" (string)
uartLog "SSIMULATION DIR/Kart/UVM/OutUART. txt" (string)
stepperLog "$SIMULATION DIR/Kart/UVM/outStepper.txt" (string)
dcLog "$SIMULATION_DIR/Kart/UVM/outDC.txt" (string)
sensorsLog TMULATION DIR/Kart/UVM/outSensors.txt" (string)
creglog $SIMULATION DIR/Kart/UVM/OutCREG.txt" (string)
commandsLogLevel (natural)
outputLogLevel (natural)
uartLogLevel (natural)

Figure 38 - Kart Toplevel Testbench
The tester internal layout differs because it makes use of the UVM technology - see Figure 39.

The tester reads the commands given in $SIMULATION_DIR/Kart/UVM/uvmCommandsStudent.txt
and creates different logs under $SIMULATION_DIR/Kart/UVM/outXXX.txt. The file can be modified
without the circuit being recompiled. The corresponding simulation layout file for Modelsim is
available under $SIMULATION_DIR/Kart/kartStudent.do.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 48 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

dock

dockoriver
Lclock

[Uart Manager

it

iz

i3

coils

forvarcs m—————4

pum -

....... batterysciin

hallpuises

distanceruse wvmsipare
e
isselected
dstavalia e
o omsemsrontor
sensors
Control Registers Manager

Ler

Figure 39 - Kart Toplevel Tester

Stepper - Ffee running (DC 66%, step...
ting D... Setting D... SettinD... SettingD... SettingD... Stepper rea... Stepper rea... Letting system run 10s

(5ensors)

0000
00
(Hall)
(Ranger)

0000

(Battery)

(CReg)
0037 0027

Figure 40 - Kart Toplevel Simulation

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 49 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

6.2.1.1 Tests

All the student-designed blocks are tested (check both target and info signals on the simulation).
There is no direct error logging. One must check the functionality “by hand” in the simulation
window (by correlating signals with the info from the transcript window or the log files).

6.2.2 Full-board

Another tester, checking the whole system (including Rx/Tx frames, registers managers ...) can
be loaded through the Kart_test => kartController_full_tb block and the $SIMULATION_DIR/
Kart/kartStudent.do file.

It is mostly intended for people developing the full circuit, but left there for curious people:

L
€ Motor . [Stepper . Battery } .:Hau . Leds + Memo...
Waitin... | Reading .. Spe... Led4 > off, 1..
(Tiansactions)
0 I O D D O O | O 1V sens end switch 10 ... {{dc s... | [[]llsens led 40... W
By T e K0T Tual. Juart send 3CI35NUL.. Juar.. | [[luart sen..
L L1l | 1
il NN Il
[002 0002
8 3 43
()
(Rx)
(F‘ame)
(oc)y
foe 0000} {001F} {o00... {0000} fOOIF}
E— @& | | —
0. 00F
0000 0000 0005 0000
{ Stepper)
{0000} {0000} {00... {0000} {000AT
0000 000A
L T T T —
0 0
0
[
0
. | -
|-
(-
] 1]
@ 1 W
| —
| —

Figure 41 - Kart Full Simulation

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 50/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

6.3

SuMMERSscHOOL 1/ RC Car

Setting up the board

Once your whole circuit is working in simulation, the last step is to tell the FPGA which physical
pin corresponds to which signal and setup how many inputs and outputs you really use.

6.3.1 I/Os configuration

Based on which sensors you intend to use or not, modify the Kart_Student package in the Kart
library:
« Set STD_HALL_NUMBER to the desired number of hall sensors to use (1-2)
« Set STD_ENDSW_NUMBER to the desired number of digital inputs to use (0-16)
« Set STD_LEDS_NUMBER to the desired number of digital outputs to use (0-8)
« Set STD_SERVOS_NUMBER to the desired number of servomotors to use (0-8)
» When using both LEDs and servos, the sum of both must not exceed 8.
» Registers will be stacked in the order LEDs then servos. E.g.: 3 LEDs and 2 servos => LEDs will
use registers LEDS_1 to 3, and servos registers SERVOS_4 and 5.

LEDs and Servos

LEDs and SERVOs registers are shared among the system and stacked next to the others (LEDs

first). Here is an example:

« Thave two ‘leds’ type outputs, and three servomotors.

« Iset STD_LEDS_NUMBER to 2.

« I set STD_SERVOS_NUMBER to 3.

« In the pining (see next chapter), I assign {leds[1]} and {leds[2]} to my two outputs, and
{servos[1]}, {servos[2]} and {servos[3]} to the servomotor outputs.

« From my application, I set registers LED1 and LED2 as defined in Table 10 for leds, and LED3, LED4
and LED5 as defined for servos.

6.3.2 Pining setup
This is done by altering the constraints file found under Board/concat/Kart.pdc.
All PMODs are listed, along with other signals such as the clock, 12C, UART ...

A simple signal is defined with its name like stepperEnd, and signals from a vector are written such
as {leds[11}.

Warning
Do not modify the signals which are not linked to PMODs I/Os.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 51/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Inputs

To wire an input, set the IO to the correct signal name such as:

set_io myVHDLSignalName -pinname 97 -fixed yes -DIRECTION Input

You can also append -RES_PULL Up and -RES_PULL Down to the end of the line to enable a pull-up
or pull-down resistor.

Outputs

To wire an output, set the IO to the correct signal name such as:

set_io myVHDLSignalName -pinname 97 -fixed yes -DIRECTION Output

Refer to the PMOD - Appendix B pages to know how boards should be used, with or without pull
resistors ...

Valid signals
Only signals found in the Board/Kart_Board VHDL block can be used:

Inputs

- stepperEnd: where the stepper end switch is connected

« distancePulse, opt: where the ultrasound ranger PWM pin is connected

« {halls[x]}, from 1 to STD_HALL_NUMBER: where the hall sensors are connected

« dc_A, dc_B: where the DC motor control pins are connected

+ {endSwitches[x]}, from 1 to STD_ENDSW_NUMBER, opt: where digital, 3.3V inputs are
connected

Outputs

« coill to coil4: where the coils of the stepper motor are connected

+ {leds[x]} from 1 to STD_LEDS_NUMBER, opt: where the digital outputs are connected

« {servos[x]} from 1 to STD_SERVOS_NUMBER, opt: where the servomotors outputs are
connected

6.3.3 Onboard LEDs

A blue LED indicates that the board is powered (top right of the board), while a second found near
the USB connector shows in and out transaction over UART.

The red led indicates if the stepper end switch is pressed.

The toggles on and off when a magnet is rotated in front of the hall sensor 1.

The green led indicates if the smartphone is connected to the BLE module:

« It blinks when connected in the solution version

« It stays on when connected in the student version

6.4 Programming the board

Professor validation

You are sole responsible to determine when your circuit is ready to be flashed
and tested on hardware, but feel free to discard any remaining doubt with your
professors before programming your system.

They will also show you once how the deployment toolchain works.

Refer to Libero - Appendix III to use and deploy your design thanks to the Libero IDE.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 52/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

6.5 USB commands emulation

Power Precautions

Use a laboratory power supply limited from 0.15A (no motors) up to 1.2 A4 (with

motors).

To test the communication directly from a PC, the tool EBS3 UART Interpreter is available in the
project folder under CommandInterpreter either as a Windows executable, Linux executable or

Python script.

Hereafter the steps to follow in order to communicate with the Kart:

« Power the circuit off

« Remove the BLE module - Section 4.7 from the motherboard - Section 4.2
» Power the motherboard - Section 4.2 with a regulated DC voltage supply with +12V
« Wire the USB-C present on the daughterboard - Section 4.3 to your PC

» Two new UART COM ports should be detected

« Download and/or open the Kart Command Interpreter utility (available in the VHDL project in

the folder CommandInterpreter/)
» Linux

» Windows

» Source code

+ In the top menu Serial => Port, select the correct COM port

» Should be the biggest

To test the connection, click the Read button.
The Tx and Rx values should change, with Rx
becoming green (frame correctly received), and

a text added to the text area.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1

% Summer School 1 - Kart UART Interpreter - X
Serial About OpenQCD Exit
T Oxaa 000 000 000 0x36
R Oxaa 0x00 0x00 0x00 0336
Read: DC Motor | Prescaler | 0 - freq = error - presc = 0

Medule Register Value
Write Read
DC Motor — | Prescaler — |

Init kart | DC Motor Stepper Motor

16:28:26.390

Read: DC Wotor | Prescaler | 0 - freq = error - presc =0

Clear

Port: COM13 | Baud Rate: 115200

Figure 42 - Kart EBS3 UART Interpreter

53/ 81

https://github.com/hei-synd-did/did-kart-ebs3/blob/main/CommandInterpreter/KartCommandInterpreter_1.1.0_linux_x86_64
https://github.com/hei-synd-did/did-kart-ebs3/blob/main/CommandInterpreter/KartCommandInterpreter_1.1.0_windows_x86_64.exe
https://github.com/hei-synd-did/did-kart-ebs3/blob/main/CommandInterpreter/commandInterpreter.py
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

6.5.1 Quick Test

The simplest way to test both motors are the following three buttons Init Kart, DC Motor, and

Stepper Motor:
Button Effect Output
« Set the DC prescaler, stepper prescaler, —
and execute the restart sequence. Must DC Prescaler to 31
Stepper Prescaler to 500
Init Kart be pressed first. BT as connected
. CReg to reset w. stepper end (0b111111)
+ Answer the 4 prompts following your CReg to normal mode (0b100111)
. Init done
hardware configuration.
+ Set the speed to full for 2s DC test
S] 0 f 9 DC speed tp 15
. et 1t to 0 for 2s DC speed tp 0
DC Motor DC speed 10,15
« Set it to full in reverse for 2s DC speed to 0
if hall sensors are mounted, extra messages will tell the speed. DC test done
Stepper test
Stepper tp 400 (30°)
10:46:33.169
Read: Stepper Motor | Actual Angle | 28
10:46:34.804
L Set the Stepper to 400 (36 o) Read: Stepper Motor | Actual Angle | 364
10:46:34.999
M DeteCt angle reaChed Read: Stepper Motor | Stepper HW | stepper open - position
Stepper Motor h reached
. Set the stepper to 0 Stepper 10 0
« Detect angle reached o 104636.207
Read: Stepper Motor | Actual Angle | 364
Read: Stepper Mo‘t;r | Actual Angle | 28
10:46:38.029
Read: Stepper Motor | stepper open - position reached
Stepper test done

Table 3 - Quick Test buttons
6.5.2 Registers R‘'W

Each register can be read and/or written by hand following their data description - Section 7.2. For
this, select the Module first, then which Register to access.

Read

To read, simply click the Read button. Successful read will be shown in green (CRC is ok) and logged,
with extra computed informations. For example the DC prescaler logs the motor frequency.

Write

To write, enter a value in the value box such as:
« Direct integer (only DC speed may be negative)
+ Obxxxx binary values

« 0Oxxxxx hexadecimal values

Then click on the Write button.

Reset
Simply power-cycle the FPGA board to reset all registers.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 54/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Communication

This section defines the serial link protocol [21] used to communicate between the Kart and the
BLE Module - Section 4.7 [10] to the PC or Android Smartphone.

Contents
7.1 General Principle oo 56
7.1.1 Serial Port Configurationooiiiiiiiiiii 56
7.1.2 Message fOrmatoooiuiii i 56
7.2 REGISOIS ..ot 57
7.3 Initialisation SEQUENCEooiiiiiii 59

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 55/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

7.1

SuMMERSscHOOL 1/ RC Car

General Principle

The system incorporates a BLE module - see Section 4.7. To prevent line congestion, data trans-
mission from the Kart to the User occurs exclusively during specific events or upon the User’s
request. This strategy helps optimize communication by minimizing unnecessary data transfer and
enhancing overall system efficiency.

7.1.1 Serial Port Configuration

The module communicates with the FPGA through UART with the following settings:

Reading State | Data bits | Parity | Stop bits | Handshake | Baudrate
HIGH 8 NONE 1 NONE 115'200

Table 4 - Serial Port Configuration

7.1.2 Message format

SoF (1byte) | Address (1byte) Data (2bytes) EoF (1byte)
OxAA UINTS8 UINT16 / INT16 / VECTOR16 (MSB First) | CRC8 / ITU

Table 5 - Message Format

The address is decomposed as follows: 0bMMWRRRRR
« MM : targeted module

» 0b00 : DC Motor

» 0bO1 : Stepper Motor

» 0b10 : Sensors

» 0bl1l : Control Registers
« W: defines if the data is saved to ('1') or read from ('0') the FPGA
The FPGA will respond to a request with the exact same address whenW = '0*
The FPGA will save incoming data in the targeted register whenW = '1'
The FPGA will send data on predefined events with the W bit set to '0"
 RRRRR : targeted register

v

v

v

7.1.2.1 Frame example

For the BLE module to light LED1 with it changing each 500 ms, the following frame is sent:

SoF (1byte) | Address (1byte) | Data High (1byte) | Data Low (1byte) | EoF (1byte)
0xAA 0b10100001 0b10000001 0b11110100 0x74

Table 6 - Frame example LED+ 500ms

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 56/ 81

https://crccalc.com
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

7.2 Registers

Device Access | From | To
Read 0x00 | Ox1F
DC Motor -
Write | 0x20 | Ox3F
Read 0x40 | Ox5F
Stepper Motor -
Write | 0x60 | Ox7F
Read 0x80 | Ox9F
Sensors -
Write | OxAO | OxBF
Read 0xCO | OxDF
Control -
Write | OxEO | OxFF
Table 7 - Memory Map
DC Motor
Addr| Name Type Description Direction Event
0x00| Prescaler UINT16 DC PWM frequency f, e =
el — IOI\IjIVI—‘I]zl\/[E %
PWM,;.,,.+ prescaler — 16+ prescaler
0x01 Speed INT5 Desired speed @ =:>%
from -15 (0xFFF1) to 15 (0x000f) | & '
negative = backwards
Table 8 - DC Motor Registers
Stepper Motor
Addr| Name Type Description Direction Event
0x00(Prescaler UINT16 Stepper switching frquenc e =
f step prescaler e
0x01| Target angle | UINT16 Desired steering angle Fe =
g g : g ang DORRE =)
in motor steps =
0 = end switch
0x02(Actual angle | UINT16 Actual steering angle %=:> @ When a delta of at least
in motor steps ’ &= | STP_ANGLE_DELTA_DEG (2°) from
0 = end switch the last registered value happens
0x03| Stepper HW | UINT14 Bit[0] : stepper end %=> @ Sent when stepper end is pressed
+ Bit[1]: position reached ’ &= | (rising edge) or position reached
Vector2 Bits[15:2]: actual steering angle (rising edge)

Table 9 - Stepper Motor Registers

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1

57 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Sensors
Addr| Name Type Description Direction Event
0x00| LEDI BIT Bit[15]: on - off %~
+ Bits[14:0]: half-period in ms E=5 i
UINT15 if 0, led status = bit 15
LEDx
0x07 LED38 BIT Bit[15]: on - off R =:>%
+ Bits[14:0]: half-period in ms e i
UINT15 if 0, led status = bit 15
0x00| SERVO1 UINT16 | Servo target pulse duration in clock @ =:>%
pulses (10°000 = 1 ms) === ’
SERVOx
0x07| SERVOS UINT16 | Servo target pulse duration in clock @ =:>%
pulses (10°000 = 1 ms) S= i
0x08 USER1 UINT16 User register for custom data @ =>%
USERx
0x0F USER8 UINT16 User register for custom data @ =:>%
0x10| Voltage UINT16 Battery Voltage %=:> @ When a delta of at least
U = register * 25075 x 7.8V ’ = SENS_BATT_DELTA_MV (50) from
the last registered value happens
0x11 Current UINT16 Consumed current %@ @ When a delta of at Ileast
I = register * % ' e | SENS_CURR DELTA_MA (50) from
the last registered value happens
0x12| Range finder | UINT16 Distance to sensor %=:> @ When a delta of at least
D = register * #ﬁ“'—”{) ’ =5 | SENS_RANGEFNDR_MM (60) from the
10 .
Register zeroed if less than 152mm last registered value happens
(sensor min distance)
or greater than 1500mm (arbitary
max distance)
Event not sent in such case
0x13 End Vector16 Sensors current values %w @ On any edge change of any sensor
Switches Right justified (sensor 1 is bit 0) | =3
0x14 Hall 1 UINT16 Hall pulses count %@ & Each
Zeroed on overflow of the register ’ iﬁ; SENS_HALL_OLD_SEND_TIMEOUT_MS
(100ms) if value changed from last
time
0x15 Hall 2 UINT16 Hall pulses count %@ @ Each
Zeroed on overflow of the register ’ &= |SENS_HALL_OLD_SEND_TIMEOUT_MS
(100ms) if value changed from last
time

Table 10 - Sensors Registers

type. See Board Setup - Section 6.3 for more information.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1

The LEDx and SERVOX registers are shared. Use either of the register format according to the set output

58 /81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

7.3

SuMMERSscHOOL 1/ RC Car

Control
Addr| Name Type Description Direction Comment
0x00| Hardware | Vector6 | Bit[0] Forwards: when '0' the =:>% The end sensor always defines
Control Kart goes backwards, when '1' the | & ' angle 0. Angles are always positive
dc-motor turns forward numbers in registers.
Bit[1] Clockwise: when '1°', the The stepper motor phases sequences
Kart turns to the right as the stepper have to be switched according to
coils go from 1 to 4 bits 1 and 2.
Bit[2] sensorLeft: when '1' the
stepperEnd switch is located on the
left otherwise the right
Bit[3] stepperEnd: emulates the
end switch contact for the stepper
motor
Bit[4] Restart: restart the stepper-
Motor module and stop the DC
motor when '1'
Bit[5] Stepper end emulation:
for tests only, simulate the
stepperEnd signal
0x01| BT Status | Vectorl | Bit[0] btConnected: when '0', the NRFQQ The register is set by the NRF itself,
smartphone is disconnected ' since it is not possible to foresee the
disconnection.
If the bluetooth connection is lost,
the kart must stop.

Table 11 - Control Registers

Initialisation Sequence

The Hardware Control[4] = restart bit is automatically reset back to 'e* when the
stepper_end input is activated.

Multiple registers must be set before the Kart can drive. The following sequence is used by the EBS3
serial interpreter - Section 6.5 :
» Write DC Motor => Prescaler to 31 (around 21 kHz PWM frequency)
» Write Stepper Motor => Prescaler to 400 (250 Hz coil switching frequency)

« Tell the smartphone it is connected by writing Control Registers = BT status to 1

» Write the value of the kart center position in the Stepper Motor => Target angle register

+ Write Control Registers=> Hardware Control to 0b10xxx to restart the system
» The stepper should turn until hitting the end switch, except if already on it

» Read Stepper Motor=- Stepper HW and check the last bit
» Ifis '1', it means we are already zeroed

» If not, wait for an event from this register to tell the reset is complete

The Kart is now ready to function !

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1

59/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Appendices

Contents

A TO0IS .o 61
| D) D B 1T 13 4 1S S 61
LY, Yo 1] 3 o 62
IIT Microchip LDEIOt 63

I O 1) 74 1S3 63

I SYIERESIS .. 64

i Flashing .. ooooo i 67

B PMOd Doardsoee i 69
D IDULS et 69

i Ultrasound Rangeroooooiiiiiiiiiii e 69

ii Buttons / Digital Inputs 70

I DU PULS ettt et e 70

1 Digital SIgnalsooiii i 70

il Breadboardo 70

iii PMOD-OD2 boardcoouuiiiiiiiiii e 71

L 5 E] 03 4 1 oo 73

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 60/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

A Tools

I HDL Designer

Mentor HDL designer is the tool for graphical design entry as used during laboratories [4]

TP Design Manager - Project examples - > » =B =
File. Edt Miew HOL Tasks Tools Uptwns Window HE‘?

B F@E- A REX 2| ALAEANEHE 85 0 ABY 20 %@ -SV-2 20PN Y -Q
Main || Design Exploser [Using viewoaint. Defull Yiewnoint KN Tasks

Unit | Twpe Language |File . [Iereiig ey Mams | ¥ My Tasks

LaRT = uan_th uan_th [[E] Fienister Assistant
) =ddwesc_decods Block VHOL thlt = ol usrt o uzr_th e Genersie

4 clock_divider Component VHOL flowe e = Bg struct ua_thistucs) :

i conol_operstion Compenent WHOL fem.sm LEun tester(llow) - &% DesignChecker
=3 cpu_inierace Block. VHOL et it BRu uar_topistuct] + B'% DesignChecker Pl
w3 setial_isedace Block, VHOL elructbd B .ﬁ () cpu_interfacemeorg = F # ModslSim Flow
= slatus_registers Block. VHDL stefuz_rac LI contral_aperationiism)

& g it Slack VHDL ol 20z clock_dividenfiow) ks hiodeisim Compie
= ol uath Compenent VHOL stucthd Hua address_decadedibl; M. ModelSin Sinuiste
ol uert_tap Componet YHDL struct bd =pEud selial_intedaca(stinc B Ouestasim Compile
ol | Black. VHOL fsm.sm U0 anit_rov_contralfsm) ¥ . CestaSim Flow
. FHUl statys_registers(spec) P Cusstaim Simulate
P UARTAxmit_rov_controltsm bomit] (State Diagram) = B E | I0 UaARTAusrt top/struct (Block Diagram} I

i €k Vew HOL Disgam Tesws Sevioke Add Optoms Window Help
(8- esE SR, BE PP AR

[File Edt View HDL Disgam Tasks: Add Simulate Animation Opoons Window Help

[B-+BHSE-4 28 - Q@ 2L DS

e

bl LTl =]

el
Tasks
V:a‘wpn'\'ﬁm
| Design Unt it -

Figure 43 - Mentor HDL Designer
Always run the kart.bat file to launch the project.

Parts you must complete are pointed by purple text blocks:

TO COMPLETE

coill
coil2
coil3

coil4

A cheatsheet is available online under https://github.com/hei-synd-ss1/ss1-docs/blob/main/
control-electronics/EDA_Tools_Cheatsheet.pdf.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 61/ 81

https://eda.sw.siemens.com/en-US/ic/hdl-designer/
https://github.com/hei-synd-ss1/ss1-docs/blob/main/control-electronics/EDA_Tools_Cheatsheet.pdf
https://github.com/hei-synd-ss1/ss1-docs/blob/main/control-electronics/EDA_Tools_Cheatsheet.pdf
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

II Modelsim

Mentor ModelSim for simulation [5]

ﬁ wave - default

File Edit Wiew Insert Format Tools Window

N=E&E fBR:D2 M %

[y B e

2 R

| 0 ps to 2268748 ps | Now: 210 ns Delta: 0

b

Figure 44 - Mentor Modelsim

The simulations are explained under Section 6. They allow to test on the module level itself or the
complete circuit in operation by simulating commands received from the smartphone.

The simulations files are available under the Simulation folder and contains among others the .do
waveforms files related to all VHDL tester.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 62/ 81

https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

IIT Microchip Libero

Microchip Libero IDE for synthesis and programming|6]

Figure 45 - Microchip Libero

Libero SoC is a design software from Microchip (former Actel) for FPGA .
i Overview
1 Synthesis

Libero SoC can be launched as a standalone or from one of its *.prjx project file to complete the
synthesis process.

One can launch Libero directly from the Kart project by running the correct task.

+ On HDL Designer, open the Board library

+ Highlight the top-level block Kart_Board

+ On the tasks list on the right, first run Prepare for synthesis then Libero Project Navigator

» My Tasks
@ F Generate
M. ModelSim Compils
M: ModelSim Simulate
+- M F ModelSim Flow
+ ' Prepare for Synthesiz
sty | ibero Project Mavigator
2B |pdate. prix
&7 Libero Project IDE

Figure 46 - HDL Designer - Tasks
2 Flash

The FPGA flash is done through the FlashPro software included with Libero through the generated
*.pdb bitfile thanks to a dedicated programmer such as the FlashPro4.

It can be launched as a standalone or directly from within Libero.

FlashPro can also be used to generate *.svf files which can then be used with OpenOCD to flash
the FPGA by its USB port.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 63/ 81

https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

ii Synthesis
1 Prepare project

After running the HDL task, the project window opens. On the list located on the left, locate the
Compile => Constraints => yourConstraintsFile.pdc = right-click => Mark as used:

(® Libero - C\Users\axel.amand\Desktop\t\tttt.prix™
Project File Edit View Design Tools Help

IS axe 0B

Design Flow & x Reports @ X
Kart_Board [l >] @ | [5 Project summ
- ttlog
[Tool [«] - Kart_Board rep

} Create Design
E3 Create SmartDesign
- [] Create HDL
w Create SmartDesign Testbench
- Bl Create HDL Testbench
&# View/Configure Firmware Cores
S+ b Verify Pre-Synthesized Design
B simulate
} Constrain Design
éﬁ Import /0 Constraints
- & Import Timing Constraints
} Implement Design
= G Synthesize
] Constraints
B ¥ Verify Post-Synthesis Implementation
- B Simulate
= B Compile
=[] Constraints
| | T Ci\deviebs3\20_Software\02_KartMobo\Board\concat\Kart.pdc

= b Constrain Place and Route ok o Lsed

Create/Edit 170 Attributes Open in Text Editor
) Create/Edit Timing Constraints

& Floorplan
- B Place and Route Unlink: copy file locally
B b Verify Post Layout Implementation e ——
-~ B simulate
A e -

Save as..

Delete from Project

Figure 47 - Libero - Use constraints

Right click on Synthesize => Open Interactively. In the newly opened window, on the left, set
the correct clock frequency and exit while saving:

> Synplify Pro L-2016.08M-2 - [C:/Users/axel. amand,/Desktop/tt/tt,
P[5 File Edit View Project Run Analysis HDL-Analy
BB 8@ RDEB Q@G D
‘ Synplify Pro

‘Ready

2Run

Project Files | Design
| Microsemi IGLOO : AGLN250D
=& [Kart_Board_syn]

| T} Open Project...

|T} Close Project

[Add File... (& VHOL
_ - H Kart.vhd [w
|Et,; Change File... 4 synthesis

|{§ Implementation Options...

BR Add P&R Implementation
|8, View Log

|
|
|
|
|# Add Implementation. .. |
|
|
|

Frequency (MHz):
e|10 = Auto Const.

-

Figure 48 - Libero - Clock setup
This step is required for the program to estimate if the implementation reaches the correct timings.

Right click on Compile => Open Interactively => I/O attribute editor and check that pins are
correctly linked to the internal signals with correct settings:

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 64/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

4 # MuttiView Navigator [Kart_Board] - o X
@ Fie View Took Options Help Fie Edit View Logic Format Tools Window Help
DEH? FmA6 » XrBEIS0D, & “ 2 DrEEE S an
1
= boved 2| [Evoat [ESRIECR/S=|
[Design Flow | 4 batenySDain oo e Fosstor oo | vt ~
5, kot o & || =) |6 tocked| Name | Standard | Dive (mA)) S | TPul’ | Load@F)| Reg | Swappable| Trigge
(:3»,@ agn e BT o - e - 5T 5 O
ST = = =
o o Amote ge e fousoTs 22 5 s (o O B & g -
é - E E) - o m 3 EDR ADLIBOUTB.| 26 % Bark2 | (VCM. g Figh None 5 0 0
o E‘? o gk s 0 DY ADLBOUTE.| 28 B | e Tw s Figh | Mene 5 0 0
ompile Laout a w07 5 PHODIIT] ADLBOUTE.| ¢ B | e (0w 0 Figh | Nene 5 0 0
o] o3 & |Pwooi AOUBOUTE.| 10 2 | Baa [vow i | Mone B m O
Programming File 4 7 PHODT] AoUBOUTE.| 11 D | Bma [vow & Figh | None 5 0 O
o PHODTE] AOUBOUTE.| 13 o | Bma [oon & Figh | Nene 5 0 O
o 88 hruisce s PHODTE] ADUBOUTE.| 15 2 | Bma [oon & Fioh | None 5 0 O
- 7 - @ B8 LED G pad ADLIBOUTE. = » : ene 0 O
I WiultView Navigator | [smomme | -y T) ® 2 | s oo s Ao | W 5 o a]
Y o 48 LD v ied T__|PHooim ADUBOUTE.| 19 2 | Bs [Low e Foh | Tene 5 0 0
hOY mvi. [E ser=| @ @ ﬁ Dot = [PwooTE ROUBOUTE.| %0 o | ma [von T | e s g &l
s e e | | (ol T a0 T3 |Pwooa] ROUBOUTE.| 27 2 | B2 [oon s Foh | e 5 0 O
Viewer | PinEdtor ChipPlanner ' Edtor Edtor | Analyzer Power oo T Jpwooze AOUBOUTE.| 28 o | B2 [vow 0 Fah | Tone 5 0]
. ” ol w0z o 5o | e vor T [R e | s 0 o
D p_500ms_RNO 0 PNODZ4] ADUBOUTE.| 30 % Bark2 | VW B Figh Tone g 0 O
x o &% PHODT pedl1 T [Pwooa AOLBOUTE.| 31 5 | B2 [von 5 Figh | Tene 5 0 0 -
Kl @ o PMOD1 pad(2] = — =
featw Padage s |
B
)
T\ an fErors Warings) Info /
Edit /0 settings FAMIGLOO DIE: AGLN250VS PKG: 100 VQFP
s @ Erers A Waminas @ Info [Manage suppressed messaaes [T\ output Resie RFnd T

Figure 49 - Libero - Constraints check
2 Synthesize
When the project is ready, the VHDL file must be synthesized, compiled and rooted on the chip.

Either click on Layout in the previously opened window (Compile == Open Interactively =-
Layout => Ok) or double click on Place and Route in the task list.

The Message window on the bottom of Libero can be used to check for errors and warning (both
should always be checked). Some parts of the circuit may be pruned, clocks inferred unintentionally,
unused signals found ...

In addition, reports can be browsed in the Reports tab, notably:
+ Synthesize - prjName.srr:

Reports 8 X | Starage 8% |

En @oeros

CIERY ke 257 =15 (n = oard(scruce)) o

ion file C:\Users\axel.amand\Desktop\to\to\synthesis\Kart_Board.sap.

Figure 50 - Libero - Logfile

which contains informations on:
» Clock summary: should only show the actual clocks - if some inferred ones are found, there
is a design problem in the VHDL code
» Performance summary: shows the worst slacks, if the timings are met and the potential
fastest clock usable
» Core Cells and RAM/ROM usages: how full the FPGA is
+ Compile - prjName_compile_log.rpt shows the following:
» Compile Report: more detailed view of used cells, BRAM block, I/Os ...
» I/0 Technology: ensure the standard is set to LVCMOS33
» I/0 Placement: ensure I/Os are all locked (Placed and UnPlaced ones may indicate errors or
that the compilation used a pad to root a signal more easily because said pad was not locked
even if not used => user must ensure the pad is not rooted to anything on the board or lock it
beforehand)
+ Place and Route - prjName_globalnet_report.txt shows global clocks and reset signals found
under Nets Sharing Loads. In most cases, only a clock and a reset should be shown.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 65/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Inferred clocks

Incorrect designs may lead the synthesizer to infer some clocks (e.g. may appear on state machines
depending on a signal to trigger each state).

While clock inference is only a warning, the consequences are for part or all of the design to be
clocked by a random signal and thus not work at all when flashed.
Stop and correct the problems.

Here is an example of inferred clock:

Clock Summary
LR

Start Requested Requested Clock Clock Clock
Clock Frequency Period Type Group Load
Kart_Boardlclock 10.0 MH=z 100.000 inferred Inferred clkgroup 0 1328
coilControl|stepdelayed inferred clock 10.0 MHz 100.000 inferred Inferred clkgroup 1 4

Figure 51 - Libero - PDC warning

Locked pins
All T/Os referenced in the VHDL file must be linked to a pad of the chip.

If at the end of the compilation the following window appears:

W Warning

. 'You are about to program the device without all I0s assigned and locked. This is not recommended.
__I_l Do you want to continue?

Yes Mo

Figure 52 - Libero - PDC warning

the *.pdc constraints file is missing some I/Os.

This is a critical error.
STOP and correct the issues before continuing,.
Failing to do so may result in destruction of the electronic.

3 Bitfile

If the compilation is successfull, double click on Generate Programming Data to generate a *.pdb
bitfile.

FlashPro can be launched directly with a right click on Program Device => Open Interactively.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 66/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

iii Flashing
1 FlashPro

Overview
FlashPro is the official tool supported for the Karts FPGA .

Usage Launch FlashPro directly or from within the Libero project with a right click on Program
Device => Open Interactively.

Wire a compatible programmer (such as a FlashPro4) and click on Refresh/Rescan for Program-
mers which should show found devices:

& FlashPro - [t] - O X
File Edit View Tools Programmers Configuration Customize Help
b=d ? = EE M W @ o 5 6
~
Mew Project ﬁ Configure Device %
‘|> ‘|> RUM
Open Project Eﬁ' View Programmers I._,. .

. Programmer Programmer Port Programmer Programmer
Name Type Status Enabled
155413 FlashPro4 ush55413 (USB 2.0

Figure 53 - Flashpro - Programmers
Under Configuration => Load Programming File select the previsouly created *.pdb file.

Wire the board, connect the programmer, then click on PROGRAM. The advancement is shown
in column Programmer Status.

The programmer does not supply the daughterboard with power. An external power
source (motherboard or USB-C) is needed.

L L]

I/Os states normally remain in high-impedance state (with potential pull resistors)
0 while the chip is being programmed. For sensitive applications, disconnect it from
the motherboard beforehand.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 67/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

2 OpenOCD

This method is not currently supported by all your teachers. You have no guarantee
o to receive any help from them. Ask first before going down this route.

The board can be programmed without any third-parties hardware through OpenOCD thanks to the
embedded FT2232HL chip on the daughterboard which offers both an UART and a JTAG interface.

If interested, refer to the doc/Kart_AGLN250.pdf - section OpenOCD.

To not run flash commands by hand, once OpenOCD is installed correctly with its extension
files and added to the path, you can run the EBS3 UART Interpreter - Section 6.5 and click on
OpenOCD in the toolbar. Select any of your .svf file for the tool to locate all required files. It will
then launch the programming and logs are output in the textbox.

HEI-Vs / ZaS, AmA, CoF, PrC / 2025 / v3.0.1 68/ 81

https://openocd.org/
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

B PMod boards

+12V +3.3V GND P4 P3 P2 P1

433V GND (P8 P7 P6 P5

1]

Figure 54 - PMOD Pinning [9], [22]

I Inputs

The sink per pin cannot be higher than 8 mA.
! Never ever input a voltage different than +3.3V.
Internal pull-up/down can be enabled at will on the FPGA.

i Ultrasound Ranger

An ultrasound ranger can detect if there is an obstacle at the front or back of the kart. It is based
on the PMOD-MAXSONAR board from Digilent [23], and can be plugged into any one-row PMOD
connector.

Pin Descr.
AN (Unused)
RX (Unused)
TX (Unused)
PWM
GND
3.3V

QN | U RN

Figure 55 - PMOD MAXSONAR
Use th PWM pin with no internal pull resistor.
Beware not to wire it on the +12V pin !

See Section 5.4.4 for more informations on the generated pulse.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 69/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

ii Buttons / Digital Inputs

The PMOD-CONT1 - Wire terminal connectors - [24] and the PMOD-TPH - Pin headers - [25] can
both be used to interface digital inputs.

Table 12 - PMOD-CON1 and PMOD-TPH boards

The first connects inputs thanks to screw terminals, the second with pin headers.

| 0 Enable pull resistors on the FPGA side based on your input type (push-pull, open-
drain ...).

IT Outputs

The source or sink per pin cannot be higher than 8 mA.
! The outputs must always be in the +3.3V range and there are no voltage feedback
protection !

i Digital Signals

Direct drive from the FPGA is only possible for signals attacking high-resistance circuits like
MOSFETs gates.
Such elements may be wired directly, or by using the PMOD-CON1 / PMOD-TPH - chapter ii boards.

You must at all time respect the previous warning.
ii Breadboard

The PMOD-BB board is intended for tests. It is a small breadboard which allows to plug compo-
nents in and test a small circuit before designing a custom circuit.

Use the given breadboard and
! do not solder on the holes di-
rectly.

Figure 56 - PMOD Breadboard

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 70 / 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

iii PMOD-OD2 board

The PMOD-0OD2 ia a custom board allowing to control up to 4 outputs with a selectable voltage
level thanks to open-drain outputs.

The double-rows PMOD connector is used to avoid confusion when plugging the board thanks to its
keying pin. The lower row is unused.

Pins

Descr. 1|2

X| P1 3| 4

> X\ P2 516

%g X| P3 7| 8
fin x| P4 |9 10
79-0 ’f;:%agn x| GND | 11| 12
5% X33V |13 14

X | 12V

Table 13 - PMOD-0OD2 board and pining

Output Voltage
The voltage is selected by soldering one of the three following resistors on the backside of the board
to switch between +3.3V, +5V or +12V:

Only one resistor must be soldered at any
° given time.

Table 14 - Vio selection

Terminal
There are three screw terminals:

« A double terminal for Vio
« A double terminal for GND
« A quad terminal for the four outputs

They are all indicated on the back of the board.

Always use the terminals of the same board for Vio, Px and GND. Do not root either of those from
another source to avoid destroying the protections in place.

The board uses negative logic.
When setting up your constraint file, use the signals {servos[x]} to use the PMOD-
OD2 board. The signal is already inverted FPGA-side.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 71/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Wiring loads
Since outputs are open-drains, two wiring methods can be used:

+ Leds, relays, small DC motors ...:
» If needed (e.g. LEDs), put a resistor in series with the load.
- For inductive loads, the circuit is already protected with flyback diodes.
» Set the Vio jumper to the desired voltage
» Wire the positive side of the load on the Vio terminal (J1) and the negative one to Px (J3)
» Ensure no resistor from R2 to R5 is soldered.
» When Cx is '0", the output is left floating and there is no conduction.
» When Cx is '1', the transistor is driven and the output conducts.

+ Pseudo push-pull, servos control ...:

» Basically, it is only possible to either close the transistor (output a ‘0’) or left it open (output a
‘Z’). Some loads require a well-defined ‘0’ or ‘1",

» Add a resistor either:
- Between the Vio terminal (J1) and the Px terminal (J3) - external resistor
— Solder one on the R2 to R5 pads - soldered resistor

» Set the Vio jumper to the desired voltage.

» When Cx is '0', the outputis '1".

» When Cx is '1°, the output is '0"*.

DO NOT TRY TO DRIVE CURRENT THROUGH THE Px PIN.
All the current would flow through the resistor, creating a voltage drop and
power loss, leading to a fire hazard.

Both methods are shown in Figure 57 :

Output Vi

o ! I_
AN | I o
1 P]
1 -~
V+ connection [RS-
1 5 & [N
o - - ! S S g s
I RN [N
"r-' > ind g g
D1 D2 D3 D4 1 s = 58 s
R2 R3 R4 RS |] IS s
v 2% [
INM %) INM %) INM %) INM %) NSOV TN
S E S £ VALK L
> N E o N 2 23§
% % % % o' xS 2
bal el wy bal =
@ m @ m 13 &
1 N
r 4 4 4 2
C q——
r
T2A ¢ ; T2B 4 T3A ¢ ; T3B 4 e
=] 10 connection
ca i ltle coslt]l aaltla s |t ! Open-drain outputs !
O — O F — U
= =
51 A 2 51 A 2
Up to 3 [A] per 10, but ...
J4 - No more than 3 [A] consumed in total
1 - No more than 1.5 [A] in total if used for the SS1
2
GND connection
GND

Figure 57 - Driving loads with PMOD-OD2

HEI-Vs / ZaS, AmA, CoF, PrC / 2025/ v3.0.1 72/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

C Inspiration

Figure 60 - Summerschool 2022

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 73/ 81

https://www.hevs.ch/fr/events/summer-school-2024-209957
https://www.hevs.ch/fr/actualites/summer-school-2023-207380
https://www.hevs.ch/fr/photos/summer-school-2022--hei-204119
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

Figure 61 - Summerschool 2020

Figure 62 - Summerschool 2018

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 74 / 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

Figure 64 - Summerschool 2015

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 75/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Figure 66 - Summerschool 2012

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 76 / 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

Figure 67 - Summerschool 2009

/)7 vaLAISEE
Hes s O/// waLus@

Haute Ecole d'Ingénierie .
Hochschule fiir Ingenieurwissenschaften

Kart
SummerSchool '

Figure 68 - Summerschool 2005

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 77 / 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSCHOOL 1/ RC CAR

Haute Ecole d'Ingénierie
Hochschule fir Ingenieurwissenschaften

Kart
SummerSchool '04

Figure 69 - Summerschool 2004

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 78 / 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Glossary

DC - Direct Current 2, 7, 23, 26

FPGA - Field Programmable Gate Array 7, 11, 41, 56, 63, 65, 67
GUI - Graphical User Interface 7

PWM - Pulse Width Modulation 7, 23

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 79/ 81

https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERSscHOOL 1/ RC Car

Bibliography

[14]

(15]
[16]
(17]

S. ye industrial, “DC Motor Modelcraft RB350018-2A723R 12V Technical Datasheet.” 2006.
A. Amand and S. Zahno, “FPGA-EBS3 Electornic Technical Documentation.” 2022.

“Hei-Synd-SS1/ss1-vhdl: HEVS SS1 Kart Summerschool Project Based on the EBS3 Igloo
Board.” Accessed: Sep. 01, 2023. [Online]. Available: https://github.com/hei-synd-ss1/ss1-vhdl

“HDL Designer Visualizing Complex RTL Designs.” Accessed: Sep. 01, 2023. [Online]. Avail-
able: https://eda.sw.siemens.com/en-US/ic/hdl-designer/

“ModelSim HDL Simulator” Accessed: Sep. 01, 2023. [Online]. Available: https://eda.sw.
siemens.com/en-US/ic/modelsim/

“Libero® IDE | Microchip Technology” Accessed: Sep. 01, 2023. [Online]. Available:
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/
libero-ide

“IGLOO Nano Low Power Flash FPGAs with Flash*Freeze Technology Datasheet.” 2019.

M. Technologies, “Microchip MCP3426/7/8, 16-Bit, Multi-Channel AY Analog-to-Digital Con-
verter with I2CTM Interface and On-Board Reference.” 2009.

D. Inc, “Digilent Pmod Inteface Specification v1.2.0” 2017.

“nRF52840 Dongle” Accessed: Sep. 01, 2023. [Online]. Available: https://www.nordicsemi.
com/Products/Development-hardware/nRF52840-Dongle

F. INC, “FTDI FT2232H Dual High Speed USB to Multiporpose UART/FIFO IC.” 2019.
A. Amand and S. Zahno, “Kart SODIMM-200 Pinning.” 2022.

“Pulse-Width Modulation.” Aug. 29, 2023. Accessed: Sep. 15, 2023. [Online]. Available: https://
en.wikipedia.org/w/index.php?title=Pulse-width_modulation&oldid=1172794179

“H-Bridge” Aug. 07, 2023. Accessed: Sep. 15, 2023. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=H-bridge&oldid=1169162530

N. Inc, “Nanotec SP3575M0906-A Stepper Motor Datasheet.” 2006.
D. Inc, “Digilent Pmod DC Stepper Schematic” 2022.

Omron, “Datasheet Omron Subminiature Basic Switch Offers High Reliability and Security.”
2005.

Honeywell, “Honeywell SS311PT/SS411P Bipolar Hall-effect Digital Position Sensors with
Build-in Pull-up Resistor.” 2009.

“Schmitt Trigger” Aug. 28, 2023. Accessed: Sep. 15, 2023. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Schmitt_trigger&oldid=1172685652

N. Semiconductor, “Datasheet Nordic NRF52840 Dongle.” 2020.

“Universal Asynchronous Receiver-Transmitter” Aug. 28, 2023. Accessed: Sep. 01, 2023.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Universal_asynchronous_
receiver-transmitter&oldid=1172648211

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 80/ 81

https://github.com/hei-synd-ss1/ss1-vhdl
https://eda.sw.siemens.com/en-US/ic/hdl-designer/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle
https://en.wikipedia.org/w/index.php?title=Pulse-width_modulation&oldid=1172794179
https://en.wikipedia.org/w/index.php?title=Pulse-width_modulation&oldid=1172794179
https://en.wikipedia.org/w/index.php?title=H-bridge&oldid=1169162530
https://en.wikipedia.org/w/index.php?title=H-bridge&oldid=1169162530
https://en.wikipedia.org/w/index.php?title=Schmitt_trigger&oldid=1172685652
https://en.wikipedia.org/w/index.php?title=Schmitt_trigger&oldid=1172685652
https://en.wikipedia.org/w/index.php?title=Universal_asynchronous_receiver-transmitter&oldid=1172648211
https://en.wikipedia.org/w/index.php?title=Universal_asynchronous_receiver-transmitter&oldid=1172648211
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

SuMMERscHOOL 1 / RC CAR

[22] “Pmod™ - Digilent Reference” Accessed: Sep. 01, 2023. [Online]. Available: https://digilent.
com/reference/pmod/start

[23] D.Inc, “Pmod MAXSONAR Reference Manual” 2014.
[24] D.Inc, “Digilent Pmod CON3 Schematic.” 2015.
[25] D.Inc, “Pmod CON3 Reference Manual.” 2016.

HEI-Vs / ZaS, AmA, CoF, PrC /2025 / v3.0.1 81/ 81

https://digilent.com/reference/pmod/start
https://digilent.com/reference/pmod/start
https://www.hevs.ch/en/hautes-ecoles/school-of-engineering/systems-engineering/
mailto:silvan.zahno@hevs.ch
mailto:axel.amand@hevs.ch
mailto:francois.corthay@hevs.ch
mailto:charles.praplan@hevs.ch

	Security Guide
	Consequences

	Introduction
	Objective
	Evaluation
	Files
	Tools
	Cabling

	System Architecture
	Block diagram
	Functions

	Hardware Components
	Good Practices
	Motherboard (MB)
	Power
	Charging
	Power-on
	Power State

	SODIMM Daughterboard Connector
	I/Os
	FPGA Reset
	UART Sniffer
	BLE Socket

	Dautherboard (DB)
	Power
	Programming
	Connection with Motherboard
	I/O

	Motors
	DC-Motor
	Stepper-Motor
	PMOD DC-Stepper Control board

	End of turn switch
	Hall Sensor
	Bluetooth Dongle NRF52840
	Sensors & I/Os
	Servo Motor
	Custom modules

	FPGA Design
	Toplevel
	Packages
	Custom blocks
	Testbenches
	Embedded LEDs

	Motor Controller
	Overview
	PWM Generation
	Hardware orientation
	Bluetooth connection
	Restart
	Tests

	Stepper Motor Controller
	Overview
	Driving coils
	Initialisation of the Kart
	Restart signal
	Hardware orientation

	Tasks Summary
	Tests

	Sensors Controller
	Overview
	Outputs
	Inputs

	Hardware setup
	Hall counter
	Tests

	Ultrasound Ranger (Optional)
	Tests

	Servomotors controller (Optional)
	Tests

	User functionalities (Optional)

	Optional features
	DCMotor - Acceleration ramp
	StepperMotor - Dynamic steering frequency
	Sensors
	Ultrasound ranger
	Servomotors

	Other

	Testing
	Per module
	DC Motor testing
	Stepper Motor testing
	Testing

	Sensors Controller testing
	Hall Sensor
	Ultrasound Ranger (Optional)
	Servomotors (Optional)

	Whole circuit
	Modules Simulation
	Tests

	Full-board

	Setting up the board
	I/Os configuration
	Pining setup
	Onboard LEDs

	Programming the board
	USB commands emulation
	Quick Test
	Registers R/W

	Communication
	General Principle
	Serial Port Configuration
	Message format
	Frame example

	Registers
	Initialisation Sequence

	Appendices
	Tools
	HDL Designer
	Modelsim
	Microchip Libero
	Overview
	Synthesis
	Flash

	Synthesis
	Prepare project
	Synthesize
	Bitfile

	Flashing
	FlashPro
	OpenOCD

	PMod boards
	Inputs
	Ultrasound Ranger
	Buttons / Digital Inputs

	Outputs
	Digital Signals
	Breadboard
	PMOD-OD2 board

	Inspiration

	Glossary
	Bibliography

